
AEC = alveolar epithelial cell; AM = alveolar macrophage; BALC = bronchoalveolar lavage cells; CTGF = connective tissue growth factor; ECE-1 =
endothelin-converting enzyme-1; ECM = extracellular matrix; ET-1 = endothelin-1; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth
factor-binding protein; IFN = interferon; IL = interleukin; IP-10 = interferon-inducing protein-10; IPF = idiopathic pulmonary fibrosis; PDGF =
platelet-derived growth factor; PDGF-R = platelet-derived growth factor receptor; PGE2 = prostaglandin E2; Th = T-cell helper; TGF-β = transform-
ing growth factor-beta; TNF-α = tumour necrosis factor-alpha; UIP = usual interstitial pneumonia; VEGF = vascular endothelial growth factor.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is clinically a restrictive
lung disease that characteristically progresses relentlessly
to death from respiratory failure. Median survival of newly
diagnosed patients with IPF is about 3 years, similar to
that of clinical stage 1b non-small cell lung cancer. The
quality of life for IPF patients is also poor. Despite this,
there has been remarkably little progress in development
and/or assessment of therapeutic strategies for IPF.

High dose corticosteriods alone or in combination with
other immunosuppressive agents continue to be pre-
scribed, although there is no clinical evidence of their effi-
cacy [1]. Recent data indicate that, following such
treatment, less than 30% of IPF patients show objective
evidence of improvement, including better survival, while
there is a high incidence of drug-related adverse effects.
Furthermore, it remains unclear whether a positive
response can be attributed to the treatment itself or to the

patients having a less aggressive form of the disease
[2,3]. For significant improvements to occur in the survival
of patients with IPF, there needs to be development of
novel and more precisely targeted therapies. Selection of
future appropriate regimes must be critically dependent on
improved characterisation of the molecular pathways
driving pathogenesis of IPF [4].

The focus of research efforts in a number of laboratories,
including our own, has thus been directed towards estab-
lishing the relative roles of molecules that may determine
the outcome of associated profibrogenic processes.
Accordingly, such efforts could lead to potential candidate
molecules being exploited for therapeutic manipulation.
Support for this strategy is echoed in the recent consen-
sus statement issued jointly by the American Thoracic
Society and the European Respiratory Society, in which
the roles of “various cytokines and growth factors” are
described as “critical” to the process of fibrosis [1].

Review
Growth factors in idiopathic pulmonary fibrosis: relative roles
Jeremy T Allen and Monica A Spiteri

Centre for Cell and Molecular Medicine, Keele University School of Medicine, North Staffordshire Hospital, Stoke-on-Trent, UK

Correspondence: Dr JT Allen, Centre for Cell and Molecular Medicine, Keele University School of Medicine, North Staffordshire Hospital, Thornburrow
Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK. Tel: +44 1782 555452; fax: +44 1782 747319; e-mail: j.t.allen@med.keele.ac.uk

Abstract

Treatment of idiopathic pulmonary fibrosis patients has evolved very slowly; the fundamental approach
of corticosteroids alone or in combination with other immunosuppressive agents has had little impact
on long-term survival. The continued use of corticosteroids is justified because of the lack of a more
effective alternative. Current research indicates that the mechanisms driving idiopathic pulmonary
fibrosis reflect abnormal, dysregulated wound healing within the lung, involving increased activity and
possibly exaggerated responses by a spectrum of profibrogenic growth factors. An understanding of
the roles of these growth factors, and the way in which they modulate events at cellular level, could
lead to more targeted therapeutic strategies, improving patients’ quality of life and survival.

Keywords: alveolar epithelial cell, apoptosis, growth factor, idiopathic pulmonary fibrosis, myofibroblast

Received: 5 September 2001

Accepted: 24 September 2001

Published: 28 November 2001

Respir Res 2002, 3:13

© 2002 BioMed Central Ltd
(Print ISSN 1465-9921; Online ISSN 1465-993X)

Page 1 of 9
(page number not for citation purposes)



Page 2 of 9
(page number not for citation purposes)

Respiratory Research    Vol 3 No 1 Allen and Spiteri

Growth factors: multiple profibrogenic functions
Individual growth factors involved in the development of
pulmonary fibrosis invariably regulate other cell functions,
as well as cell proliferation. They may originate from a
variety of sources including immune cells, endothelial cells,
epithelial cells, fibroblasts, platelets and smooth muscle
cells. However, in the context of IPF pathogenesis, it is now
suggested that IPF is an ‘epithelial-fibroblastic disease’
(see Pathogenesis of IPF: new concepts – is inflammation
relevant?). It is therefore the interactions of growth factors
with these epithelial and fibroblast cell types that are most
critical in determining whether the ultimate outcome of
wound-healing responses to lung injury is IPF.

Growth factors have predominantly been described in
fibroblasts, which are recognised key players in wound
healing. It is becoming increasingly apparent, however,
that ‘injured’ and ‘activated’ alveolar epithelial cells (AECs)
both secrete and respond to growth factors themselves,
particularly in IPF, thereby contributing to the outcome of
the profibrogenic processes. Functions regulated in
fibroblasts that directly influence fibrogenesis include
enhancing or inhibiting extracellular matrix (ECM) protein
synthesis, chemotaxis, production of metalloproteinases
and their inhibitors, expression of adhesion molecules, and
angiogenesis. Much less is known about how growth
factors regulate AEC function to modulate fibrogenesis
but, in AECs obtained from IPF patients, growth factors
are potentially responsible for secretion of metallo-
proteinases and, paradoxically, inhibit proliferation through
enhancement of apoptosis.

It also seems probable from familial studies that there is a
genetic predisposition to development of IPF [5]. Although
the nature of any genetic component is at present
unknown, polymorphic genes for a number of fibrogenic
growth factors have been found [6–8]. Cellular phenotype
may thus be an important determinant of growth factor
response and, hence, of increased susceptibility to devel-
opment of IPF.

This review focuses on those growth factors for which
there is compelling data for their involvement in the molec-
ular pathways controlling fibrogenesis. Within the con-
straints of this forum, it will not be possible to fully
consider all aspects of this involvement. Intentionally, we
will update, rather than simply repeat, what is already
widely known regarding these mediators. We specifically
highlight new important findings, with implications for
novel targeted therapeutic approaches in IPF.

Pathogenesis of IPF: new concepts — is
inflammation relevant?
Recent developments strongly challenge the current
concept of IPF pathogenesis. The widely held view has
been that the distinct histopathological subsets of IPF

(usual interstitial pneumonia [UIP], desquamative inter-
stitial pneumonia, non-specific interstitial pneumonia, and
acute interstitial pneumonia) share common pathogenetic
features, regardless of the initiating agent (where known).

A hypothesis of persistent interstitial inflammation leading
to, and modulating development of, fibrosis has therefore
developed. Underpinning this hypothesis are many studies
that have highlighted the critical importance, in determin-
ing the outcome of pathogenic events, of polypeptide
mediators released both from resident and immune cells.
Indeed, this paradigm appears to be sustained in a
number of potentially fibrotic lung diseases that have a
prominent inflammatory process during their early stages
and that exhibit a favourable response to steroid-based
anti-inflammatory therapies, particularly if therapy begins
during the inflammatory phase (e.g. desquamative intersti-
tial pneumonia, non-specific interstitial pneumonia, hyper-
sensitivity pneumonitis, and sarcoidosis).

Recent investigations, however, have shown that considera-
tion of the constituent histological patterns of IPF as sepa-
rate pathological entities correlates much better with clinical
outcome, those with UIP tending to have the worst progno-
sis. Anti-inflammatory therapies, even in combination with
potent immunosuppressives, fail to improve the disease
outcome. Such a distinction in clinical course has led to a
redefinition of IPF diagnostic criteria by the American Tho-
racic Society and the European Respiratory Society, and a
requirement for the histopathological presence of UIP [1].
Furthermore, there is very little evidence to support the pres-
ence of any prominent inflammation in the early stages of
UIP. In fact, inflammation appears not to be required for the
development of the fibrotic response [9,10], which may
account for the observed therapeutic failures.

The documented inflammation found in UIP is usually mild,
and is associated with areas of ongoing fibrosis rather
than prefibrotic alveolar septa [9]. Selman et al. [10] have
advanced a new hypothesis in which they propose that
UIP (IPF) represents a model of abnormal wound healing
(Fig. 1), resulting from multiple, microscopic sites of
ongoing AEC injury and activation, with release of fibro-
genic mediators. These mediators lead to areas of fibrob-
last–myofibroblast foci (sites of injury and abnormal repair
characterised by fibroblast–myofibroblast migration and
proliferation), to decreased myofibroblast apoptosis, and
to enhanced release of, and response to, fibrogenic
growth factors. These foci evolve and coalesce into more
widespread fibrosis.

Associated with abnormal repair are aberrant processes
of re-epithelialisation and ECM remodelling, leading to
basement membrane disruption, angiogenesis, and fibro-
sis. Following injury, rapid re-epithelialisation is essential to
restoration of barrier integrity and requires epithelial cell
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migration, proliferation and differentiation of type II AECs
into type I AECs. In IPF, the ability of type II AECs to carry
out this migration, proliferation and differentiation appears
seriously compromised [11]. A number of profibrogenic
mediators seem to be implicated in this deficiency. Impair-
ment of this normal wound-healing response could occur
through the observed excessive loss of AECs by apopto-
sis that seems to be a feature of IPF. In parallel, proliferat-
ing fibroblasts emerging during the normal repair process
are able to self-regulate their production of matrix synthe-
sis and degradation components and mitogens, through
autocrine mechanisms that, in established fibrosis, may be
dysregulated in increased numbers of cells displaying an
altered profibrotic myofibroblast-like phenotype.

Growth factors implicated in IPF
pathogenesis
Growth factor production from damaged AECs
It is now readily apparent that the injured epithelium in IPF,
in close proximity to the interstitial fibroblasts, elaborates a
number of key growth factors. This not only allows for
autocrine control of epithelial cell growth and differentia-
tion, but also enables paracrine control of fibroblast prolif-
eration, chemotaxis and ECM deposition to occur. The
expression of several key fibrogenic growth factors has

been highlighted and can be localised predominantly to
hyperplastic type II AECs.

Tumour necrosis factor-alpha
The consequences of tumour necrosis factor-alpha
(TNF-α) overexpression or deficiency have been explored
in animal models of fibrosis. For example, mice over-
expressing TNF-α develop IPF-like fibrosis, whereas
TNF-α-deficient or double TNF-α receptor knockout mice
show resistance to bleomycin-induced fibrosis (for a
review, see [4]). Furthermore, a TNF-α promoter polymor-
phism seems to confer increased risk of developing IPF [7].

It has been shown that type II AECs are a primary source
of TNF-α in the lung [12]. In human IPF, compared with
cells from normal lungs, TNF-α immunoreactivity is
increased in hyperplastic TNF-α type II AECs [13]. In the
context of the proposed abnormal wound-healing model of
IPF, TNF-α release from damaged AECs could thus exert
profound profibrotic effects.

TNF-α may increase fibroblast proliferation, differentiation
and collagen transcription indirectly via transforming
growth factor-beta (TGF-β) or platelet-derived growth
factor (PDGF) induction pathways [14]. Furthermore,
TNF-α activity promotes induction of matrix-degrading
gelatinases that can enhance basement membrane disrup-
tion and can facilitate fibroblast migration (for a review,
see [10]). Finally, promising results have been obtained by
treating IPF patients with pirfenidone, a novel antifibrotic
agent with anti-TNF-α properties [15].

Platelet-derived growth factor
Many studies have shown that PDGF is a potent fibroblast
mitogen and chemoattractant. There is in vitro evidence
suggesting that a number of fibrogenic mediators includ-
ing TNF-α, TGF-β, IL-1, basic fibroblast growth factor and
thrombin may exhibit PDGF-dependent profibrotic activi-
ties (for a review, see [4]).

PDGF comprises two polypeptide chains, A and B, and is
active as either of the homodimers or as a heterodimer.
Activation of α and β PDGF-receptor (PDGF-R) subunits,
which have different affinities for the A and B isoforms,
occurs with their dimerisation. In normal adult lung, PDGF
and PDGF-R are expressed at low levels in alveolar
macrophages, but they are upregulated in IPF. Addition-
ally, in early-stage but not late-stage IPF, type II AECs and
mesothelial cells express PDGF and PDGF-R. In particu-
lar, the type II AECs in early-stage IPF strongly expressed
mRNA for PDGF-B and PDGF-Rβ [16]. Expression of
PDGF-B from an adenoviral vector or administration of
recombinant human PDGF-BB, delivered intratracheally
into rat lungs, produces histopathologic features of fibro-
sis [17], further supporting a role for PDGF in IPF fibro-
genesis. Moreover, suppression of PDGF peptide
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Figure 1

Abnormal wound-healing model of idiopathic pulmonary fibrosis
pathogenesis. In the model proposed by Selman et al. [10],
microinjuries damage the epithelium and cause the release of
profibrogenic growth factors and the development of an antifibrinolytic
microenvironment that promotes wound clot formation. Proliferating
and differentiating fibroblasts migrate through a disrupted basement
membrane, secreting extracellular matrix (ECM) proteins and
angiogenic factors. An imbalance in matrix-degrading and matrix-
enhancing enzymes favours increased deposition of ECM.
Myofibroblasts are not removed and they release growth factors that
promote epithelial cell apoptosis.



synthesis by the antifibrotic agent pirfenidone is associ-
ated with inhibition of bleomycin-induced pulmonary fibro-
sis in the hamster [18]. Whether PDGF is essential for
development of fibrosis, however, will only be known fol-
lowing experiments with recently developed PDGF-R
knockout chimeras (for a review, see [4]).

Transforming growth factor-beta
The TGF-β family of peptides has similar biological func-
tions and binds to the same receptors. It is only TGF-β1,
however, that is consistently found to be upregulated at
sites of fibrogenesis. TGF-β1 is a fibroblast chemoattrac-
tant and is able to exert a bimodal effect on fibroblast pro-
liferation, via an autocrine PDGF-dependent pathway.
Moreover, it is also the most potent stimulator of fibroblast
collagen production yet described. This enhanced colla-
gen deposition is mediated through increased mRNA tran-
scription and stability, through decreased degradation of
procollagen via inhibition of collagenase production, and
through increased production of matrix metalloproteinase
inhibitors (including tissue inhibitor of metalloproteinase,
plasminogen activator inhibitor and α-macroglobulin; for a
review, see [4]).

Immunohistochemical studies in patients with IPF reveal
enhanced expression of TGF-β1 in a number of cell types.
In early disease with minimal fibrosis, this was found pri-
marily in alveolar macrophages. In advanced honeycomb
fibrotic lesions typical of a UIP phenotype, however,
TGF-β1 overexpression was localised in hyperplastic type
II AECs [19]. A large number of studies with animal
models of pulmonary fibrosis have confirmed the fibro-
genic nature of TGF-β1 overexpression and have demon-
strated the antifibrotic effects of TGF-β1 inhibition, such
as with anti-TGF-β1 antibodies (for a review, see [4]). Fur-
thermore, a polymorphism at position +915 in the signal
sequence of the TGF-β1 gene confers an amino acid
change with effects on TGF-β1 production. The ‘high-pro-
ducer’ allele is associated with allograft fibrosis and pre-
transplant fibrotic pathology in patients requiring lung
transplant [8]. Unfortunately, however, the pluripotent
nature of TGF-β1 activity in the lung has prevented the
use of such specific anti-TGF-β1-directed therapies.

Therapeutic efforts are now focusing on modulators of
TGF-β1 activity such as pirfenidone, which inhibits
TGF-β1 gene expression in vivo, inhibits TGF-β1-medi-
ated collagen synthesis and fibroblast mitogenesis in vitro,
and appears to slow progression of IPF when adminis-
tered to patients [15].

Insulin-like growth factor-1 and insulin-like growth
factor-binding proteins
Insulin-like growth factor-1 (IGF-1) stimulates proliferation
of a variety of mesenchymal cell types, including fibro-
blasts where it may act synergistically with other fibro-

genic growth factors, and is also a potent inducer of colla-
gen synthesis. IGF-1 regulation is complex, with alterna-
tive mRNA splicing leading to the expression of a number
of IGF-1 variants and post-translational control of IGF-1
activity by at least six high-affinity insulin-like growth factor-
binding proteins (IGFBPs).

IGF-1 activity was first identified in alveolar macrophages
(AM) from IPF patients. Paradoxically, however, recent data
from our laboratories show total IGF-1 expression actually
decreases in unfractionated bronchoalveolar lavage cells
(BALC) from IPF patients, compared with normal controls
[20]. This correlates with findings of high levels of IGF-1
and IGF-1 receptor expression only in early-stage IPF with
minimal fibrosis, localised to a number of cell types includ-
ing AM, and prominantly in type II AECs. In late-stage IPF
or normal controls, only AM continued to express these
molecules [16]. These data point towards the importance
of IGF-1 expression in the initiation of IPF. Furthermore,
primary human airway epithelial cells produce IGF-1 in
vitro, and the IGF-1 component of their conditioned media
accounts for most of the mitogenic activity of the condi-
tioned media for lung fibroblasts [21].

IGF-1 activity is regulated by the presence of IGFBPs, able
to both stimulate and inhibit IGF-1-mediated actions and to
exert IGF-independent effects themselves. IGFBP-3 and
IGFBP-2 levels are increased in IPF bronchoalveolar lavage
fluid [22,23] and in type II AECs exposed to oxidant injury.
Furthermore, in type II AECs, these increases are associ-
ated with induction of apoptosis and show distinct patterns
of distribution, with IGFBP-3 most abundant in the extracel-
lular compartment and IGFBP-2 mainly intracellular, but
with significant nuclear localisation [24]. In primary human
lung fibroblasts, data from our laboratories show potent
induction of IGFBP-3 by fibrogenic TGF-β1 [25]. Taken
together these findings support IGF-independent functions
for IGFBP-3 and IGFBP-2 in fibrogenesis, putatively involv-
ing transcriptional activation of growth-regulating genes
and regulation of apoptosis.

Interleukin-4
Human fibroblasts demonstrate enhanced proliferation
and collagen synthesis, with a simultaneous downregula-
tion of IFN-γ transcription, in response to IL-4 [26]. This
loss of antifibrotic activity of IFN-γ may promote a pro-
fibrotic mediator imbalance and favour selection of a type
2 immune response. Indeed, evidence shows that IPF
patients have a predominantly type 2 (T-cell helper [Th]2-
like mediator) immune response. Furthermore, patients
having drug-responsive forms of interstitial lung disease
(sarcoid and extrinsic allergic alveolitis) demonstrate
upregulation of both IFN-γ and IL-4 expression on type II
AECs, whereas IPF patients fail to express IFN-γ [12],
perhaps because of a predisposing IFN-γ microsatellite
polymorphism [27]. Simultaneous promotion of a Th2 (IL-
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4-led) response and suppression of the Th1 (IFN-γ-led)
response could thus promote fibrogenesis through
enhanced and unchecked IL-4 (Th2) expression.

Endothelin-1
Endothelin-1 (ET-1) is a peptide of diverse function impli-
cated in the development of a number of diseases, includ-
ing IPF, where it may promote fibroblast and AEC
proliferation, fibroblast differentiation into myofibroblasts,
chemotaxis, contraction, and collagen synthesis while
inhibiting collagen degradation. ET-1 is able to induce a
number of fibrogenic growth factors through paracrine
stimulation of different cell types, including TNF-α, TGF-β
and fibronectin, and may enhance neovascularisation
through induction of vascular endothelial growth factor
(VEGF) (for a review, see [28]). ET-1 is converted from an
inactive form, big endothelin, to mature endothelin by
endothelin-converting enzyme-1 (ECE-1). In IPF lungs, big
endothelin, ECE-1 and ET-1 expression is enhanced and
co-localised, particularly in airway epithelial cells and type
II AECs, and correlates with disease activity [29]. ET-1
effects are mediated through ET-A and ET-B receptors,
and ET-1 receptor antagonists such as bosentan, which
blocks both receptors, have been used with partial
success to inhibit fibrosis in a rat model of bleomycin-
induced pulmonary fibrosis [30].

Connective tissue growth factor
Connective tissue growth factor (CTGF) is an immediate-
early gene (ccn2) product, a member of the structurally
related CCN family of proteins. CCN members exhibit a
wide range of functions but, in general, are secreted pro-
teins associated with the ECM that regulate biological
processes such as adhesion, angiogenesis and fibrosis.
CTGF is a potent enhancer of fibroblast proliferation,
chemotaxis and ECM deposition.

In mesenchymal cell types, CTGF induction is primarily but
not exclusively mediated by TGF-β, through a TGF-β-
response element in the CTGF promoter (for a review, see
[31]). There has thus been considerable interest in CTGF
as a downstream mediator of TGF-β actions, not least
because CTGF may account for many of the profibrogenic
activities attributed to TGF-β and may be a more suitable
target for antifibrotic therapies.

Many recent studies have shown increased expression of
CTGF to be associated with fibroproliferative disorders,
and we recently reported this in IPF [32]. There appear to
be multiple cellular sources of CTGF in the lung, including
fibroblasts and bronchial epithelial cells. Downregulation
of CTGF expression seems to offer protection from fibro-
sis. A preliminary trial of IFN-γ co-therapy in IPF patients
led to clinical improvement, associated with inhibition of
CTGF gene expression [33]. Overexpression of TGF-β1 in
mice by delivery of a TGF-β1 adenovirus vector results in

pulmonary fibrosis, but in Smad3 knockout mice there is
resistance to development of fibrosis associated with a
failure to activate CTGF gene expression [34]. Further-
more, we recently found that Simvastatin, an HMG-CoA
reductase inhibitor with described antifibrotic properties,
also inhibits CTGF expression in isolated IPF patient-
derived lung fibroblasts (K Watts, E Parker, MA Spiteri, JT
Allen, unpublished data, 2001).

Emergence and persistence of myofibroblasts
The emergence of altered fibroblast phenotypes during
tissue remodelling is well recognised. Myofibroblasts, dif-
ferentiated fibroblasts with morphological features of
smooth muscle cells, are a feature of fibrotic lesions and
comprise the main cell type of the fibroblast foci already
described [10]. Functionally they seem to be involved in
ECM production and the process of tissue contraction,
necessary for wound healing.

Fibroblasts isolated from IPF patients are characteristically
more myofibroblast like than those from normal subjects,
as determined from α-smooth muscle actin expression
[35]. Recent data from a co-culture model of wound
healing indicates that TGF-β1 induces, whereas IL-1β
inhibits, fibroblast differentiation into a myofibroblast phe-
notype following epithelial cell injury. Activators of TGF-β1,
such as fibroblast-derived thrombospondin-1, are neces-
sary to convert latent TGF-β1 into its active form at the
fibroblast surface to facilitate this differentiation [36]. The
myofibroblasts show abnormal responses to, or release of,
growth factors, other mediators and ECM proteins (includ-
ing enhanced collagen, TGF-β1, matrix metalloproteinase-
9 and tissue inhibitor of metalloproteinase expression),
giving them a profibrotic secretory phenotype [37]. A con-
sequence of the sustained presence of TGF-β1 is an inhi-
bition of (IL-1β-induced) myofibroblast apoptosis. This
inhibition prevents the necessary rapid clearance of these
cells by apoptosis that is required for normal cessation of
repair, and results in continued, deleterious ECM produc-
tion [35].

Other growth factors with apoptosis-modulating proper-
ties could also be involved; in particular CTGF, which acts
downstream of TGF-β. Using CTGF antisense oligonu-
cleotides to inhibit CTGF-mediated actions on apoptosis,
we found a contrast between CTGF-induced apoptosis of
primary bronchial epithelial cells and CTGF-inhibited
apoptosis of primary IPF-derived lung myofibroblasts (JT
Allen, unpublished data, 2001). These data suggest that
CTGF could contribute to the persistence of myofibrob-
lasts in the fibrotic lung, but whether CTGF can directly
induce a myofibroblast phenotype itself is as yet unknown.

Interestingly, an IPF-derived primary myofibroblast-like cell
line demonstrates enhanced responsiveness to TGF-β1,
compared with normal fibroblasts. This results in
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enhanced expression of both IGF-1 and CTGF, perhaps
involving a fibroblast subpopulation overexpressing TGF-β
type I and type II receptors [20] (JT Allen, K Watts, unpub-
lished data, 2001). IGF-1 inhibition of apoptosis is well
recognised and its increased expression in these cells
may therefore contribute to the putative inhibition of myofi-
broblast apoptosis.

Finally, myofibroblasts from IPF also appear to be deficient
in their production of eicosanoid autocrine inhibitors of
proliferation and ECM deposition, apparently through their
inability to upregulate cyclooxygenase-2 [38] and TNF-α
receptor [39], necessary for enhanced prostaglandin E2
(PGE2) synthesis. Both TNF-α [40] and PGE2 [41] have
been shown to reduce expression of CTGF, providing an
endogenous mechanism for terminating the CTGF
response to TGF-β1 and resulting in resolution of the

fibroproliferative response without progression to fibrosis
(Fig. 2). Downregulation of myofibroblasts by induction of
apoptosis (e.g. using Simvastatin) or by inhibiting their dif-
ferentiation (e.g. using IFN-γ) have thus been suggested
as potential novel therapeutic approaches [10]. However,
in reducing myofibroblast proliferation, care needs to be
taken to avoid a parallel reduction in AEC proliferation,
which would inhibit re-epithelialisation. In this regard, data
for CTGF antisense is encouraging (see earlier in this
section), showing both a reduction of epithelial apoptosis
and an enhancement of fibroblast apoptosis. Taken
together, these data support the development of CTGF-
targeted therapies for IPF.

Growth factor-mediated AEC apoptosis
Timely re-epithelialisation following lung injury is crucial to
the successful outcome of the wound-healing process, and
recent evidence suggests that dysregulation of apoptosis
may occur, perhaps involving the Fas pathway. Fibrogenic
growth factors such as TNF-α and TGF-β upregulate pro-
apoptotic co-factors (e.g. p53, p21(Waf1/Cip1/Sid1) and bax)
required for Fas-dependent cell death, and these are
enhanced in hyperplastic AECs from IPF [42]. TGF-β1
also induces lung epithelial cell apoptosis through recep-
tor-activated Smad signalling [43].

Although there is some evidence that early loss of epithe-
lial cells can occur by Fas-mediated apoptosis, it is
unclear from studies in an animal model of bleomycin-
induced pulmonary fibrosis and IPF [44] whether this is a
prerequisite for the development of fibrosis [45]. In a
series of studies, Uhal and colleagues revealed that, in IPF
fibrotic lesions, AECs exhibit enhanced apoptosis. It also
seems that adjacent myofibroblasts release apoptotic
peptides, angiotensinogen and its derivative, the fibroblast
mitogen angiotensin II, that can induce this AEC apoptosis
through angiotensin II receptor activation pathways [46].

As might be expected, approaches that try to enhance
AEC proliferation and thus promote repair have been
advocated as possible novel therapies for IPF. Inhibitors of
apoptosis-effector caspases can effectively prevent
epithelial cell apoptosis and fibrosis in the murine
bleomycin model [47]. Captopril, an angiotensin-convert-
ing enzyme inhibitor, has the useful in vitro properties of
inhibiting Fas-mediated epithelial cell apoptosis and induc-
ing fibroblast apoptosis, and is currently undergoing clini-
cal trials in Mexico. However, preliminary results do not
show any additional improvement over combination
therapy with inhaled steroid and colchicine [48]. Ker-
atinocyte growth factor, a mitogen and differentiation
growth factor for type II AECs, has been found to have a
protective effect against development of fibrosis in animal
models of bleomycin-induced pulmonary fibrosis, where it
downregulates TGF-β and PDGF-BB expression [49].
Similarly, hepatocyte growth factor stimulates proliferation,
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Figure 2

Failure of endogenous regulation of wound-healing in idiopathic
pulmonary fibrosis (IPF). Injuries to alveolar epithelial cells (AECs)
result in upregulation of growth factor production, including tumour
necrosis factor-alpha (TNF-α). Binding of TNF-α to TNF-α receptor
(TNF-αR) activates the cyclooxygenase-2 (COX-2) pathway and
induces synthesis of prostaglandins including prostaglandin E2 (PGE2)
and 6-keto-prostaglandin F1α (PGF1α). Prostaglandins exert negative
feedback control of AEC TNF-α expression and autocrine inhibition,
through raised intracellular cAMP levels, of the connective tissue
growth factor (CTGF) response to transforming growth factor-β. This
results in limited and healthy wound healing, and prevents further
progression to fibrosis. In IPF, however, myofibroblasts exhibit marked
deficiencies in TNF-α receptor expression and COX-2 induction that
result in reduced synthesis of prostaglandins, and a failure in the
normal self-limiting wound-healing response (broken arrows), ultimately
leading to fibrosis. PRs, prostaglandin receptors.



migration and fibrinolytic capacity in A549 AECs and
attenuates collagen deposition in a murine bleomycin-
induced pulmonary fibrosis model. Of note, the antifibrotic
effects of hepatocyte growth factor were maintained even
when administered after development of the fibrosis [50].

Growth factor-mediated angiogenesis
Neovascularisation in the lungs of IPF patients was first
identified by morphological examination, but there have
been few studies to characterise its role in the fibrogenic
process. Vessel formation requires endothelial cell migra-
tion, proliferation and degradation of ECM, thought to be
regulated by a number of growth factors, and its initiation
is dependent on the balance between angiogenic and
angiostatic factors.

Members of the CXC chemokine family can exert oppos-
ing effects on angiogenesis due to the presence or
absence of three amino acids (Glu-Leu-Arg; the ELR
motif). IL-8 (containing the ELR motif) is thus angiogenic,
while interferon-inducing protein-10 (IP-10) (lacking the
ELR motif) is angiostatic. Levels of IL-8 are increased and
those of IP-10 decreased in IPF samples compared with
controls, favouring net angiogenesis. Furthermore, deple-
tion of IL-8 or IP-10 from IPF fibroblast-conditioned media
decreases or increases angiogenesis, respectively [51],
and IP-10 administered to mice reduces the fibrotic
response to bleomycin, through regulation of angiogene-
sis [52].

VEGF is an established, essential, angiogenic factor. In a
rat model of bleomycin-induced pulmonary fibrosis,
increased numbers of VEGF-positive type II AECs and
myofibroblasts were identified localised in fibrotic lesions
[53]. Recent data have shown that VEGF induces expres-
sion of CTGF, apparently through TGF-β-independent
pathways, which is mediated through VEGF receptors
Flt1and KDR/Flk1 [54]. CTGF itself is angiogenic, induc-
ing endothelial chemotaxis and proliferation and neovascu-
larisation in vivo, mediated via binding to integrin αvβ3
[31]. Furthermore, CTGF antisense inhibits both prolifera-
tion and migration of vascular endothelial cells in vitro
[55]. It is as yet unclear whether CTGF contributes to the
observed neovascularisation in IPF, and whether VEGF
regulation of CTGF provides an alternative pathway for
CTGF overexpression in IPF lungs.

Conclusion
Considerable progress has been made in recent years
towards our understanding of the pathogenesis of IPF.
The critical role of a number of interacting growth factors
in the initiation and maintenance of fibrogenesis has been
highlighted. However, clinical progress to an effective
therapy for IPF has not been achieved, in spite of promis-
ing results from novel antifibrotic therapies in animal
models. This suggests that more targeted approaches

must be developed, while at the same time more caution
should be exerted in extrapolating data from animal
studies to human IPF. The key must lie in dissecting the
crucial, intricate molecular mechanisms that control fibro-
genesis.

Recent findings point to possible genetic predisposition
and the interactions of a limited number of key growth
factors with pathways regulating processes such as apop-
tosis in AECs and myofibroblasts. Since it appears proba-
ble that only a few of these pathways are crucial in IPF,
precise targeting of any one of these pathways, via single
or several growth factors, could yield potential benefits
(Fig. 3). By directing future studies toward dissecting the
regulatory pathways of growth factor expression in these
cells, we can thus develop subtle approaches for targeting
the processes they control and therefore attempt to halt
the downward clinical progression of human IPF.
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Figure 3

Potential growth factor-mediated antifibrotic strategies. A universal cell
(fibroblast, epithelial cell or inflammatory cell) is depicted with growth
factor-processing pathways highlighted (solid arrows). Growth factors
may exert autocrine and/or paracrine effects. In idiopathic pulmonary
fibrosis, growth factor functions may be diminished or enhanced and
reversing these effects could offer potential therapeutic benefits.
Various growth factor-specific strategies are depicted (broken arrows)
that could be selected to either enhance (+) or inhibit (–) the chosen
growth factor function. ECM, extracellular matrix.



References
1. The American Thoracic Society and the European Respiratory

Society: Idiopathic pulmonary fibrosis: Diagnosis and treat-
ment. International consensus statement. Am J Respir Crit
Care Med 2000, 161:646-664.

2. Flaherty KR, Toews GB, Lynch JP, Kazerooni EA, Gross BH,
Strawderman RL, Hariharan K, Flint A, Martinez FJ: Steroids in
pulmonary fibrosis: A perspective assessment of adverse
reactions, response to therapy, and survival. Am J Med 2001,
110:278-282.

3. Collard HR, King TE Jr: Treatment of idiopathic pulmonary
fibrosis: The rise and fall of corticosteroids. Am J Med 2001,
110:326-328.

4. Lasky JA, Brody AR: Interstitial fibrosis and growth factors.
Environ Health Perspect 2000, 108:751-762.

5. Marshall RP, McAnulty RJ, Laurent GJ: The pathogenesis of pul-
monary fibrosis: is there a fibrosis gene? Int J Biochem Cell
Biol 1997, 29:107-120.

6. Blom IE, van Dijk AJ, de Weger RA, Tilanus MGJ, Goldschmeding
R: Identification of human ccn2 (connective tissue growth
factor) promoter polymorphisms. J Clin Pathol Mol Pathol
2001, 54:192-196.

7. Whyte M, Hubbard R, Meliconi R, Whidborne M, Eaton V, Bingle
C, Timms J, Duff G, Facchini A, Pacilli A, Fabbri M, Hall I, Britton J,
Johnston I, Di Giovine F: Increased risk of fibrosing alveolitis
associated with interleukin-1 receptor antagonist and tumor
necrosis factor-αα gene polymorphisms. Am J Respir Crit Care
Med 2000, 162:755-758.

8. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ,
Hutchinson IV: Genotypic variation in the transforming growth
factor-beta1 gene: association with transforming growth
factor-beta1 production, fibrotic lung disease, and graft fibro-
sis after lung transplantation. Transplantation 1998, 27:1014-
1020.

9. Katzenstein ALA, Myers JL: Idiopathic pulmonary fibrosis. Clini-
cal relevance of pathologic classification. Am J Respir Crit
Care Med 1998, 157:1301-1315.

10. Selman M, King TE Jr, Pardo A: Idiopathic pulmonary fibrosis:
Prevailing and evolving hypotheses about its pathogenesis
and implications for therapy. Ann Intern Med 2001, 134:136-
151.

11. Kasper M, Haroske G: Alterations in the alveolar epithelium
after injury leading to pulmonary fibrosis. Histol Histopathol
1996, 11:463-483.

12. Wallace WA, Howie SE: Immunoreactive interleukin 4 and
interferon-gamma expression by type II alveolar epithelial
cells in interstitial lung disease. J Pathol 1999, 187:475-480.

13. Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y: Expression
and localisation of tumor necrosis factor-alpha and its mRNA
in idiopathic pulmonary fibrosis. Am J Pathol 1993, 143:651-
655.

14. Kapanci Y, Desmouliere A, Pache JC, Redard M, Gabbiani G:
Cytoskeletal protein modulation in pulmonary alveolar myo-
fibroblasts during idiopathic pulmonary fibrosis. Possible role
of transforming growth factor beta and tumor necrosis factor
alpha. Am J Respir Crit Care Med 1995, 152:22163-22169.

15. Raghu G, Johnson WC, Lockhart D, Mageto Y: Treatment of
idiopathic pulmonary fibrosis with a new antifibrotic agent,
pirfenidone: results of a prospective, open-label phase II
study. Am J Respir Crit Care Med 1999, 159:1061-1069.

16. Homma S, Nagaoka I, Abe H, Takahashi K, Seyama K, Nukiwa T,
Kira S. Localisation of platelet-derived growth factor and
insulin-like growth factor I in the fibrotic lung. Am J Respir Crit
Care Med 1995, 152:2084-2089.

17. Yoshida M, Sakuma J, Hayashi S, Kinya A, Saito I, Harada S,
Sakatani M, Yamamoto S, Matsumoto N, Kaneda Y, Kishimoto T:
A histologially distinctive interstitial pneumonia induced by
overexpression of the interleukin 6, transforming growth
factor ββ1, or platelet-derived growth factor B gene. Proc Natl
Acad Sci USA 1995, 92:9570-9574.

18. Gurujeyalakshmi G, Hollinger MA, Giri SN: Pirfenidone inhibits
PDGF isoforms in bleomycin hamster model of lung fibrosis
at the translational level. Am J Physiol Lung Cell Mol Physiol
1999, 276:L311-L318.

19. Khalil N, O’Connor RN, Unruh HW, Warren PW, Falnders KC,
Kemp A, Bereznay OH, Greenberg AH: Increased production
and immunohistochemical localisation of transforming

growth factor-ββ in idiopathic pulmonary fibrosis. Am J Respir
Cell Mol Biol 1991, 5:155-162.

20. Bloor CA, Knight RA, Kedia RK, Spiteri MA, Allen JT: Differential
mRNA expression of insulin-like growth factor-1 splice vari-
ants in patients with idiopathic pulmonary fibrosis and pul-
monary sarcoidosis. Am J Respir Crit Care Med 2001, 164:
265-272.

21. Cambrey AD, Kwon OJ, Gray AJ, Harrison NK, Yacoub M, Barnes
PJ, Laurent GJ, Chung KF: Insulin-like growth factor I is a major
fibroblast mitogen produced by primary cultures of human
airway epithelial cells. Clin Sci 1995, 89:611-617.

22. Allen JT, Bloor CA, Knight RA, Spiteri MA: Expression of insulin-
like growth factor binding proteins in broncholaveolar lavage
fluid of patients with pulmonary sarcoidosis. Am J Respir Cell
Mol Biol 1998, 19:250-258.

23. Chadelat K, Boule M, Corroyer S, Faroux B, Delaisi B, Tournier G,
Clement A: Expression of insulin-like growth factors and their
binding proteins by bronchoalveolar cells from children with
and without interstitial lung disease. Eur Respir J 1998, 11:
1329-1336.

24. Besnard V, Corroyer S, Trugnan G, Chadelat K, Nabeyrat E,
Cazals V, Clement A: Distinct patterns of insulin-like growth
factor binding protein (IGFBP)-2 and IGFBP-3 expression in
oxidant exposed lung epithelial cells. Biochim Biophys Acta
2001, 1538:47-58.

25. Parker E, Bloor CA, Knight RA, Spiteri MA, Allen JT: Transform-
ing growth factor-ββ-induced changes in insulin-like growth
factor binding protein expression in lung fibroblasts
[abstract]. Thorax 2000, 55:A15.

26. Wallace WA, Ramage EA, Lamb D, Howie SE: A type 2 (Th2-
like) pattern of immune response predominates in the pul-
monary interstitium of patients with cryptogenic fibrosing
alveolitis (CFA). Clin Exp Immunol 1995, 101:436-441.

27. Awad M, Pravica V, Perrey C, El Gamel A, Yonan N, Sinnott PJ,
Hutchinson IV: CA repeat allele polymorphism in the first
intron of the human interferon-gamma gene is associated
with lung allograft fibrosis. Hum Immunol 1999, 60:343-346.

28. Fagan KA, McMurtry IF, Rodman DM: Role of endothelin-1 in
lung disease. Respir Res 2001, 2:90-101.

29. Saleh D, Furukawa K, Tsao MS, Maghazachi A, Corrin B,
Yanagisawa M, Barnes PJ, Giaid A: Elevated expression of
endothelin-1 and endothelin-converting enzyme-1 in idiopathic
pulmonary fibrosis: possible involvement of proinflammatory
cytokines. Am J Respir Cell Mol Biol 1997, 16:187-193.

30. Park S-H, Saleh D, Giaid A, Michel RP: Increased endothelin-1
in bleomycin-induced pulmonary fibrosis and the effect of an
endothelin receptor antagonist. Am J Respir Crit Care Med
1997, 156:600-608.

31. Brigstock DR: The connective tissue growth factor/cysteine-
rich 61/nephroblastoma overexpressed (CCN) family. Endocrine
Rev 1999, 20:189-206.

32. Allen JT, Knight RA, Bloor CA, Spiteri MA: Enhanced insulin-like
growth factor binding protein-related protein 2 (connective
tissue growth factor) expression in patients with idiopathic
pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir
Cell Mol Biol 1999, 21:693-700.

33. Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block L-H: A pre-
liminary study of long term treatment with interferon gamma-
1b and low dose prednisolone in patients with idiopathic
pulmonary fibrosis. N Engl J Med 1999, 341:1264-1269.

34. Gauldie J, Galt T, Anzano MA, Deng C, Roberts AB: SMAD3 KO
mouse is resistant to gene based TGF-beta1 induced fibrosis:
Lack of activation of CTGF [abstract]. Am J Respir Crit Care
Med 2001, 164:A759.

35. Zhang H-Y, Phan SH: Inhibition of myofibroblast apoptosis by
transforming growth factor ββ1. Am J Respir Cell Mol Biol 1999,
21:658-665.

36. Morishima Y, Nomura A, Uchida Y, Noguchi Y, Sakamoto T, Ishii
Y, Goto Y, Masuyama K, Zhang MJ, Hirano K, Mochizuki M,
Ohtsuka M, Sekizawa K: Triggering the induction of myofibro-
blast and fibrogenesis by airway epithelial shedding. Am J
Respir Cell Mol Biol 2001, 24:1-11.

37. Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman
M, Pardo A: Fibroblasts from idiopathic pulminary fibrosis and
normal lungs differ in growth rate, apoptosis, and tissue
inhibitor of metalloproteinases expression. Am J Respir Cell
Mol Biol 2001, 24:591-598.

Respiratory Research    Vol 3 No 1 Allen and Spiteri

Page 8 of 9
(page number not for citation purposes)



38. Wilborn J, Crofford LJ, Burdick MD, Kunkel SL, Strieter RM,
Peters-Golden M: Cultured lung fibroblasts isolated from
patients with idiopathic pulmonary fibrosis have a diminshed
capacity to synthesise prostaglandin E2 and to express
cyclooxygenase-2. J Clin Invest 1995, 95:1861-1868.

39. Vancheri C, Sortino MA, Tomaselli V, Mastruzzo C, Condorelli F,
Bellistri G, Pistorio MP, Canonico PL, Crimi N: Different expres-
sion of TNF-αα receptors and prostaglandin E2 production in
normal and fibrotic lung fibroblasts. Potential implications for
the evolution of the inflammatory process. Am J Respir Cell
Mol Biol 2000, 22:628-634.

40. Ricupero DA, Rishikof DC, Kuang PP, Poliks CF, Goldstein RH.
Regulation of connective tissue growth factor expression by
prostaglandin E2. Am J Physiol 1999, 277:1165-1171.

41. Abraham DJ, Shiwen X, Black CM, Sa S, Xu Y, Leask A: Tumour
necrosis factor-alpha suppresses the induction of connective
tissue growth factor by transforming growth factor-beta in
normal and scleroderma fibroblasts. J Biol Chem 2000, 275:
15220-15225.

42. Chapman HA: A Fas pathway to pulmonary fibrosis. J Clin
Invest 1999, 104:1-2.

43. Yanagisawa K, Osada H, Masuda A, Kondo M, Saito T, Yatabe Y,
Takagi K, Takahashi T, Takahashi T: Induction of apoptosis by
Smad3 and down-regulation of Smad3 expression in
response to TGF-beta in human normal lung epithelial cells.
Oncogene 1998, 17:1743-1747.

44. Kuwano K, Hagimoto N, Kawasaki M, Yatomi T, Nakamura N,
Nagata S, Suda T, Kunitake R, Maeyama T, Miyazaki H, Hara N:
Essential roles of the Fas–Fas ligand pathway in the develop-
ment of pulmonary fibrosis. J Clin Invest 1999, 104:13-19.

45. Aoshiba K, Yasui S, Tamaoki J, Nagai A: The Fas/Fas ligand
system is not required for bleomycin-induced pulmonary fibro-
sis in mice. Am J Respir Crit Care Med 2000, 162:695-700.

46. Wang R, Zagariya A, Ang E, Ibarra-Sunga O, Uhal BD: Fas-induced
apoptosis of alveolar epithelial cells requires ANGII generation
and receptor interaction. Am J Physiol 1999, 277:L1245-L1250.

47. Carrillo G, Estrada A, Mejia M, Morales J, Suarez T, Gaxiola M,
Williams J, Selman M: Inhaled beclomethasone and colchicine
(IBC) versus inhaled beclomethasone, colchicine and capto-
pril (IBCCAP) in patients with idiopathic pulmonary fibrosis
(IPF) [abstract]. Am J Respir Crit Care Med 2000, 161:A528.

48. Yi ES, Salgado M, Williams S, Kim SJ, Masliah E, Yin S, Ulich TR:
Keratinocyte growth factor decreases pulmonary edema,
transforming growth factor-beta and platelet-derived growth
factor-BB expression, and alveolar type II cell loss in
bleomycin-induced lung injury. Inflammation 1998, 22:315-325.

49. Dohi M, Hasegawa T, Yamamoto K, Marshall BC: Hepatocyte
growth factor attenuates collagen accumulation in a murine
model of pulmonary fibrosis. Am J Respir Crit Care Med 2000,
162:2302-2307.

50. Kuwano K, Kunitake R, Maeyama T, Hagimoto N, Kawasaki M,
Matsuba T, Yoshimi M, Inoshima I, Yoshida K, Hara N: Attenua-
tion of bleomycin-induced pneumopathy in mice by a caspase
inhibitor. Am J Physiol 2001, 280:L316-L325.

51. Keane MP, Arenberg DA, Lynch JP 3rd, Whyte RI, Iannettoni MD,
Burdick MD, Wilke CA, Morris SB, Glass MC, Digiovine B, Kunkel
SL, Strieter RM: The CXC chemokines, IL-8 and IP-10, regulate
angiogenic activity in idiopathic pulmonary fibrosis. J Immunol
1997, 159:1437-1443.

52. Keane MP, Belperio JA, Arenberg DA, Burdick MD, Xu ZJ, Xue
YY, Strieter RM: IFN-γ-inducible protein 10 attenuates
bleomycin-induced pulmonary fibrosis via inhibition of angio-
genesis. J Immunol 1999, 163:5686-5692.

53. Fehrenbach H, Kasper M, Haase M, Schuh D, Muller M: Differen-
tial immunolocalisation of VEGF in rat and human adult lung,
and in experimental rat lung fibrosis: light, fluorescence, and
electron microscopy. Anat Rec 1999, 254:61-73.

54. Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello L, King
GL: Vascular endothelial growth factor induces expression of
connective tissue growth factor via KDR, Flt1, and phos-
phatidylinositol 3-kinase-akt-dependent pathways in retinal
vascular cells. J Biol Chem 2000, 275:40725-40731.

55. Shimo T, Nakanishi T, Kimura Y, Nishida T, Ishizeli K, Matsumura
T, Takigawa M: Inhibition of endogenous expression of con-
nective tissue growth factor by its antisense oligonucleotide
and antisense RNA suppresses proliferation and migration of
vascular endothelial cells. J Biochem 1998, 124:130-140.

Available online http://respiratory-research.com/content/3/1/13

Page 9 of 9
(page number not for citation purposes)


	Introduction
	Abstract
	Growth factors: multiple profibrogenic functions


	Pathogenesis of IPF: new concepts — is inflammation relevant?
	Growth factors implicated in IPF pathogenesis
	Growth factor production from damaged AECs
	Tumour necrosis factor-alpha
	Platelet-derived growth factor
	Transforming growth factor-beta
	Insulin-like growth factor-1 and insulin-like growth factor-binding proteins
	Interleukin-4
	Endothelin-1
	Connective tissue growth factor
	Emergence and persistence of myofibroblasts
	Growth factor-mediated AEC apoptosis
	Growth factor-mediated angiogenesis

	Conclusion
	References

