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Abstract
Background: Mechanical strain alters protein expression. It results in phosphorylation of MAP
kinases and up-regulation of extracellular matrix proteins. We investigated whether
phosphorylation of MAP kinase family members was increased in response to mechanical strain in
fibroblasts from asthmatic patients (AF) and normal controls (NF), and whether phosphorylation
of these signaling molecules would be different in the two cell populations.

Methods: Fibroblasts were obtained from mild, atopic asthmatics and non-atopic volunteers using
endobronchial biopsy. Cells were grown on flexible, collagen I-coated membranes, and subjected
to mechanical strain (Flexercell). MAP kinase phosphorylation was measured at baseline, and during
one hour of strain. We also examined the effect of strain on proteoglycan production.

Results: At baseline, there was increased phosphorylation of ERK1/2 and p38, and decreased
phosphorylation of JNK in AF vs NF. During strain in NF, p38 phosphorylation was increased.
Conversely in AF, strain resulted in an increase in JNK phosphorylation, had no effect on
phosphorylation of p38, and resulted in a decrease in ERK1/2 phosphorylation. There was a
significant increase in versican protein production after 24 h strain in both AF and NF. JNK
inhibition reversed the strain-induced increase in versican in NF, but had no effect in AF.

Conclusion: These results show that there are phenotypic differences in MAP kinase
phosphorylation in AF vs NF, and that different signaling pathways are involved in transducing
mechanical stimuli in these two populations of cells.

Background
Mechanotransduction involves the ability of the cell to
respond to mechanical strain with a biological message
and alteration of protein production. Studies of lung cells
in vitro have identified some of the intracellular signaling
pathways that mediate this effect, which include members

of the mitogen-activated protein (MAP) kinase signaling
family. Phosphorylation of MAP kinases results in down-
stream phosphorylation of other signaling molecules, and
ultimately, activation of transcription factors [1]. Cyclic
stretch activates extracellular signal-regulated kinase
(ERK) 1/2 in different types of pulmonary cells, including
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alveolar and bronchial epithelial cells [2-4] Mechanical
strain also enhances p38 activation in bronchial epithelial
cells and in parenchymal lung strips [3,5]. Finally, phos-
phorylation of c-Jun NH2-terminal kinase (JNK) is
increased in response to mechanical strain in both bron-
chial epithelial cells and in type II-like alveolar epithelial
cells [3,6]. Mechanical strain affects the production of
extracellular matrix (ECM) components, upregulating
type I collagen in pulmonary fibroblasts, type III and IV
collagen in co-cultures of bronchial epithelial cells and
lung fibroblasts, and the proteoglycans (PGs), versican,
biglycan and perlecan, in human arterial smooth muscle
cells [7-9].

The asthmatic airway wall is subject to increased mechan-
ical strain or stress, due to bronchoconstriction of the air-
ways and the heterogeneous distribution of ventilation
[10]. Asthmatic airways are characterized by remodeling
of the airway wall, with an increased deposition of ECM
components including collagen, elastin and PGs [11-13]
Mechanical strain could, potentially, be an important
stimulus for this airway wall remodeling. Therefore,
understanding the mechanisms by which matrix is upreg-
ulated in response to mechanical strain in asthmatic air-
way cells, should give us new insight into asthma
pathophysiology. We have recently shown that versican
and decorin mRNA is increased in response to mechanical
strain in fibroblasts from asthmatic subjects, in compari-
son to cells from normal controls [14]. Some data is also
available in an animal model of asthma, the allergen sen-
sitized mouse. Kumar et al [5] have shown that ERK 1/2 is
preferentially upregulated in parenchymal lung strips
from sensitized, challenged mice subjected to mechanical
stretch, as compared to strips from non-sensitized control
mice. There is no data, however, available in human asth-
matics.

To investigate these questions in human disease, we
obtained fibroblasts from asthmatic patients and normal
volunteers using endobronchial biopsy. We studied
fibroblasts, as they are the major cell cell type putatively
responsible for the airway wall remodeling characteristic
of asthma [15]. We questioned whether MAP kinase phos-
phorylation in response to mechanical strain would be
similar in fibroblasts from asthmatic patients (AF) as
compared to fibroblasts from normal controls (NF), and
whether this mechanical signal would result in upregula-
tion of PG protein.

Methods
Materials
The following reagents were obtained from Sigma
(Oakville, Ont., Canada): EDTA, EGTA, Triton X-100,
sodium pyrophosphate, β-glycerophosphate, sodium
orthovanadate (Na3VO4), sodium fluoride (NaF), pro-

tease inhibitor cocktail, phenylmethylsulfonyl fluoride
(PMSF), Bio-Rad reagent, Tween20, Guanidium-HCl, 6-
aminohexanoic acid, benzamidine hydrochloride, N-
ethylmaleimide, JNK inhibitor (SP 600125) and antibody
against actin. Dimethylsulfoxide (DMSO) was obtained
from Fisher Scientific. Fetal calf serum (FCS) came from
HyClone (Logan, UT, USA). Dubelcco's modified Eagle's
medium (DMEM), penicillin G, streptomycin, amphoter-
icin B, trypsin came from Gibco-BRL-Invitrogen (Burling-
ton, Ont., Canada). Nitrocellulose and polyvinylidene
difluoride (PVDF) membranes, streptavidin-biotinylated
horseradish peroxidase (streptavidin-HRP), chemilumi-
nescence reagent (ECL+ and ECL assay) were obtained
from Amersham Biosciences Corp. (Piscataway, NJ, USA).
The antibodies: rabbit anti-phosphorylated ERK1/ERK2,
anti-phosphorylated p38, anti-phosphorylated JNK, anti-
total ERK1/ERK2 and anti-total p38 came from Cell Sign-
aling Technology (Beverly, MA, USA), mouse anti-human
fibroblast antigen Ab-1 antibody from Calbiochem (San
Diego, CA, USA), biotin-labeled swine anti-rabbit second-
ary antibody and biotinylated rabbit anti-mouse second-
ary antibody from DAKO (Mississauga, ON, Canada),
monoclonal mouse anti-versican antibody (12C5) from
Developmental Studies Hybridoma Bank (Iowa City, IA,
USA), rabbit anti-decorin from Dr Larry Fisher [16,17].,
and rabbit anti-lumican, a gift from Dr Peter Roughley
(Shriner's Hospital, McGill University). BioFlex silastic-
bottom culture plates were from Flexcell International
Corp. (McKeesport, PA, USA).

Bronchial fibroblast cell lines
Primary fibroblasts were isolated from bronchial biopsies
of 8 asthmatic patients and 8 healthy volunteers (Table 1).
All patients gave written informed consent, as approved
by the Laval Hospital Ethics Committee. Asthmatic
patients had mild disease, as characterized by the use of β
agonist only. None had ever used inhaled or systemic cor-
ticosteroids. All asthmatic patients were non-smokers,
and atopic, confirmed with a positive skin reaction to at
least one common allergen. Patients had PC20 metha-
choline ranging from 0–4.21 mg/ml and FEV1 within the
normal range. All normal subjects were non-atopic, non-
smokers and had PC20 methacholine greater than 16 mg/
ml. Additional details on selection and evaluation of sub-
jects, bronchoscopy and bronchial biopsy procedures,
biopsy processing, identification and characterization of
bronchial fibroblasts have been described in previous
publications [18-20] Isolated fibroblasts were character-
ized by immunofluorescence and flow cytometry using a
mouse anti-vimentin antibody, and a mouse anti-human
fibroblast antigen Ab-1 antibody that shows no cross-reac-
tivity with epithelial cells, endothelial cells, smooth mus-
cle cells, or other cell types. This identification confirmed
the purity of bronchial fibroblast cell culture [21]. Cells
were used at fifth or sixth passage.
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Cell culture
Fibroblasts were cultured in DMEM supplemented with
10% heat-inactivated FCS, 100 U/ml penicillin G, 100 µg/
ml streptomycin and 250 ng/ml amphotericin B at 37°C
in the presence of 5% CO2. Sub-culturing was carried out
using trypsin (0.25%).

Mechanical stimulation of cultured fibroblasts
Cells were seeded on type I collagen-coated 6-well BioFlex
silastic-bottom culture plates at a concentration of 1.5 ×
105 cells/well. Cells were grown in the BioFlex plates until
~ 90% confluence. Cells were serum-starved by replacing
the medium with DMEM without FCS, with antibiotics
and antimycotics for 24 h. Plates were then transferred to
the baseplate of the cell stretching device (FX-3000 Flexer-
cell strain unit, Flexcell International, McKeesport, PA)
and placed in a 37°C, 5% CO2 incubator. Application of
a negative pressure caused a downward deformation of
the flexible silastic membrane to which the cells were
attached. A biaxal strain of 30% amplitude at a frequency
of 1 Hz was applied for either 1 or 24 hr. We chose this
regimen of strain based on previous experiments con-
ducted in a fibroblast cell line [22,23] and in fibroblasts
isolated from normal and asthmatic patients [14]. At this
amplitude of strain, increases in versican protein and
mRNA were maximal. As we were interested in the signal-
ing pathways contributing to the proteoglycan signal, we
thought it most appropriate to use this regimen. Control
cells were cultured in BioFlex plates but not submitted to
cell stretch (static condition). Cell layer and/or superna-
tants were harvested at various time points, and proc-

essed. Cell viability was assessed by Trypan blue
exclusion.

MAP kinase expression
MAP kinase expression was assessed at baseline and then
after stretching for 10, 20, 30, and 60 min. Cells were
washed twice in ice-cold PBS and scraped in lysis buffer
containing 20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% Triton X-100, anti-phosphatases:
2.5 mM sodium pyrophosphate, 1 mM β -glycerophos-
phate, 1 mM Na3VO4, 1 mM NaF, and protease inhibitor
cocktail. Protein content was determined by the Bradford
technique, using a Bio-Rad protein assay system. Protein
(10 µg) was resolved in a 12% polyacrylamide gel and
transferred onto PVDF membranes. Membranes were
immunoblotted overnight, at 4°C, with 1/1000 dilution
of rabbit anti-phospho-MAP kinases antibodies (anti-
phosphorylated ERK1/2, anti-phosphorylated p38 and
anti-phosphorylated JNK). After being washed with Tris-
buffered saline with Tween20 (TBST), membranes were
incubated with a 1/1000 dilution of biotin-labeled swine
anti-rabbit secondary antibody for 1 h at room tempera-
ture, followed by 1 h incubation with streptavidin-HRP
(1/5000) in TBST. Detection was performed using
enhanced chemiluminescence (ECL+ assay). To ensure
equal loading and protein transfer, membranes were sub-
mitted to a stripping protocol by incubation for 30 min at
60°C in a buffer containing 62.5 mM pH 6.8 Tris-HCL,
SDS 2%, and 100 mM β-mercaptoethanol, and reprobed
using anti-"total" MAPK antibodies (anti ERK1/2, anti-
p38 or anti-actin). Second steps and detection were as

Table 1: Subject Characteristics

Group Sex Age PC20 FEV1(%) Atopy Medication

Asthmatic M 24 2.33 4.03 (98) Yes β-agonist only
Asthmatic F 20 4.21 3.51 (105) Yes β-agonist only
Asthmatic M 20 2 4.22 (98) Yes β-agonist only
Asthmatic F 18 0.56 3.09 (36) Yes β-agonist only
Asthmatic M 18 0.66 4.29 (94) Yes β-agonist only
Asthmatic F 22 0.14 3.55 (93) Yes β-agonist only
Asthmatic M 26 saline 3.77 (82) Yes β-agonist only
Asthmatic M 26 3.11 4.00 (76.7) Yes β-agonist only
Mean 21.8 ± 3.3 1.9 ± 1.5 3.8 ± 0.4

Normal M 32 > 128 3.76 (94) No No
Normal F 38 > 128 3.27 (n/a) No No
Normal M 23 > 128 n/a No No
Normal M 50 > 256 4 (80) No No
Normal M 32 25.5 4.01 (122) No No
Normal F 26 96 2.93 (95) No No
Normal M 29 17.7 3.82 (89) No No
Normal M 23 > 128 5.06 (103) No No
Mean 31.6 ± 9.0 3.8 ± 0.7

PC20: provocative concentration of methacholine to cause a fall in FEV1 of 20%; FEV1: forced expiratory volume in 1 second; % predicted is shown 
in parentheses; M, male; F, female; n/a, not available
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Phosphorylation of MAP kinase family proteins at baselineFigure 1
Phosphorylation of MAP kinase family proteins at baseline. Phosphorylation of the MAP kinases was detected by immunoblot 
on cell lysates using antibodies specific to the phosphorylated forms of the kinases (right panels). Equal loading of cell lysates 
was determined by immunoblotting with antibodies raised against unphosphorylated forms or actin. Left panels show the quan-
tification of (A) ERK1/2, (B) p38 and (C) JNK. The values for phosphorylated forms of each MAP kinase were normalized 
according to the values for the respective, total MAP kinase or actin (JNK). The data represent mean ± SE. AF, fibroblasts from 
asthmatic patients; NF, fibroblast from normal controls. *: p < 0.05
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described above. The densitometric values for phosphor-
ylated forms of MAP kinases were normalized according
to the values for total MAP kinases or actin. Separate sets
of cells were used for measurement of MAP kinase expres-
sion at baseline, and each time point after stretch.

PG extraction and expression
Cells were submitted to cell stretching for 24 h. After cyclic
stretch, medium was aspirated and stored at -20°C. The
cell layer was rinsed three times with PBS. PGs were
extracted with ice-cold 4 M Guanidium-HCl-50 mM
sodium acetate (pH 5.8)-1% Triton X-100 containing the
following proteases inhibitors: 100 mM 6-aminohexanoic
acid, 10 mM EDTA, 5 mM benzamidine hydrochloride,
10 mM N-ethylmaleimide, 0.1 mM PMSF at 4°C over-
night. The PGs extracts were then centrifuged at 15000
rpm for 30 min; the supernatants were dialyzed exhaus-
tively against 50 mM Tris-HCl (pH 8.0) containing pro-
teases inhibitors and distilled water, and concentrated;
protein content was measured (Bio-Rad protein assay).
For measurement of versican, PG was extracted from the
medium; for measurement of lumican and decorin, PGs

was extracted from the cell layer. Electrophoretic separa-
tion of versican was performed in 5% SDS-Page, and small
PGs (lumican and decorin) in 10% SDS-Page. After elec-
trophoresis, separated PGs were transferred to nitrocellu-
lose membranes at 30 volts overnight at 4°C. After
blocking, membranes were probed with mouse mono-
clonal anti-versican antibody, rabbit polyclonal anti-
decorin or rabbit polyclonal anti-lumican (1:1,000) for 1
h at room temperature. After washing with TBST, mem-
branes were incubated with a biotinylated rabbit anti-
mouse or swine anti-rabbit secondary antibody (1:1,000)
for 1 h at room temperature, washed again with TBST, and
then incubated in streptavidin-HRP (1:1,000) for 1 h at
room temperature. After washing of membranes, anti-
body binding was visualized through ECL detection.

JNK inhibition
In a subset of experiments, the JNK inhibitor, SP600125
(20 µM), dissolved in DMSO, or DMSO alone, was added
thirty minutes before stretching for 24 hr with the Flexer-
cell device. A third set of cells subject to stretch received
neither SP600125 nor DMSO. Experiments were carried

Effect of strain on ERK1/2 phosphorylation in (A) normal (NF); and (B) asthmatic fibroblasts (AF)Figure 2
Effect of strain on ERK1/2 phosphorylation in (A) normal (NF); and (B) asthmatic fibroblasts (AF). Phosphorylation of ERK1/2 
was detected by immunoblot on cell lysates using antibodies specific to the phosphorylated forms of ERK1/2 (upper panels). 
Equal loading of cell lysates was determined by immunoblotting with antibodies raised against total ERK1/2. Lower panels show 
the quantification of ERK1/2 bands. The values for phosphorylated forms of ERK 1/2 were normalized according to the values 
for total ERK1/2. The data represent mean ± SE. *: p < 0.05
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out in both AF and NF, with and without strain. To check
for successful JNK inhibition, cells pre-treated with either
SP600125 or DMSO for 30 min, were stimulated with
sorbitol (which stimulates JNK phosphorylation). Pre-
treatment with SP600125, but not DMSO, abrolished the
sorbitol-induced increase in JNK phosphorylation.

Quantification of immunoblots
Densitometric analysis was performed using image ana-
lyzer software, the FluorChemtm FC 800 system (Alpha
Innotech, San Leandro, CA, USA), which measures the
sum of all the pixel values after background correction.

Statistical analysis
The data were analyzed using GraphPad software. Data
are reported as mean ± standard error. ANOVA with Dun-
nett's multiple comparison tests was used to analyze dif-
ferences within groups at different time points. T test was
used to compare data between groups.

Results
At baseline, MAP kinase activation is increased in AF vs NF
At baseline, the phosphorylation of ERK1/2 was increased
1.65 fold in AF in comparison to NF (Figure 1A, p < 0.05).
The phosphorylation of p38 was 2.45 fold greater in AF
than in NF (Figure 1B, p < 0.05). There was decreased
phosphorylation of JNK (3.14 fold) in AF in comparison
to NF (Figure 1C, p < 0.05).

Mechanical strain resulted in differential phosphorylation 
of MAP kinases in AF vs NF
In NF, there was a trend to increased ERK1/2 phosphor-
ylation with a maximum occurring at 20 min of strain
(Figure 2A). Conversely, in AF, mechanical strain resulted
in a significant decrease in the ERK1/2 phosphorylation at
30 min with a return to basal levels after 1 h strain (Figure
2B). Strain significantly increased p38 phosphorylation in
NF (maximum at 30 min) (Figure 3A) (p < 0.05), but had
no effect on p38 phosphorylation in AF (Figure 3B). In

Effect of strain on p38 phosphorylation in (A) normal (NF) and (B) asthmatic fibroblasts (AF)Figure 3
Effect of strain on p38 phosphorylation in (A) normal (NF) and (B) asthmatic fibroblasts (AF). Phosphorylation of p38 was 
detected by immunoblot on cell lysates using antibodies specific to the phosphorylated form of p38 (upper panels). Equal load-
ing of cell lysates was determined by immunoblotting with antibodies raised against total p38. Lower panels show the quantifi-
cation of p38 bands. The values for phosphorylated p38 were normalized according to the values for total p38. The data 
represent mean ± SE. *: p < 0.05.
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NF, there was a trend towards increased JNK phosphoryla-
tion with a maximum at 30 min of strain (Figure 4A). The
JNK phosphorylation in AF was significantly increased,
with a maximum occurring at 20 min of strain, and a
return to basal levels after 1 h strain (Figure 4B) (p < 0.05).

Mechanical strain increased versican protein production in 
both AF and NF
Versican secretion in the medium was significantly
increased with strain in both NF and AF (Figure 5A).
Decorin production was measured in the cell layer; there
was a trend towards increased production of decorin with
strain in both AF and NF, but the increase did not reach
significant levels (Figure 5B). There was no effect of strain
on lumican production (Figure 5C).

Inhibition of JNK abrogated increased versican production 
in NF only
Addition of JNK inhibitor (SP600125, 20 µM) or DMSO
alone, in the culture medium had no effect on versican or
decorin production in non-strained cells (both NF and
AF). With strain, the previously demonstrated increase in

versican production was again demonstrated (p < 0.05).
The addition of JNK inhibitor reversed the strain-induced
increase in versican production in NF (Figure 6A), but not
in AF (Figure 6B). JNK inhibition had no effect on decorin
production (data not shown).

Discussion
The present study reports the first evidence that phospho-
rylation of MAP kinase signaling proteins is different in
fibroblasts from asthmatic patients, compared to fibrob-
lasts from normal volunteers. We also show that JNK
phosphorylation in response to excessive mechanical
strain, is increased in asthmatic vs normal fibroblasts.
Finally, we confirm that mechanical strain increases versi-
can production in both asthmatic and normal fibroblasts,
and that the signaling pathways involved in this response
are different in these two cell populations.

The increased phosphorylation of ERK1/2, and p38 at
baseline in AF supports the hypothesis that MAP kinase
signaling represents an "important point of convergence"
for the various signaling pathways that are involved in the

Effect of strain on JNK phosphorylation in (A) normal (NF) and (B) asthmatic fibroblasts (AF)Figure 4
Effect of strain on JNK phosphorylation in (A) normal (NF) and (B) asthmatic fibroblasts (AF). Phosphorylation of the JNK was 
detected by immunoblot on cell lysates using antibodies specific to the phosphorylated form of JNK (upper panels). Equal load-
ing of cell lysates was determined by immunoblotting with antibodies raised against actin. Lower panels show the quantification 
of PJNK and actin bands. The values for phosphorylated JNK were normalized according to the values for actin. The data rep-
resent mean ± SE. *: p < 0.05
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inflammatory process underlying asthma [24]. In vitro
studies show that Th2 cytokines, such as interleukin (IL)
4 and 13, known to be upregulated in asthma, activate
MAP kinase family members in different types of lung
cells. Furthermore, the use of MAP kinase inhibitors

reduces or inhibits release of IL-8, and eotaxin, two
cytokines implicated in asthma pathophysiology [25,26]
ERK 1/2 and p38 have been shown to be involved in
eotaxin-induced IL-8 and GM-CSF production by bron-
chial epithelial cells [27]. JNK has been implicated in the
release of GM-CSF, RANTES and IL-8 from bronchial epi-
thelial cells [28]. Laliberté et al [20] have shown that in
asthmatic airway fibroblasts there is increased expression
of cell surface integrin receptors, as compared to airway
fibroblasts isolated from normal volunteers. As integrins
activate MAP kinases, the increased number of integrin
receptors could potentially contribute to the increased
phosphorylation of ERK and p38 observed in AF. Another
possibility is that chronic treatment with β-agonists may
contribute to increased MAP kinase phosphorylation in
AF. A recent paper by Shnackenberg et al [29] reports that
isoproterenol increased pERK 1/2 levels in airway epithe-
lial cells. The effect was transient and phosphorylation
levels returned to baseline within 30 minutes; hence, we
do not believe this mechanism can explain our data.

Studies in animal models of asthma also support the
hypothesis that MAP kinases are involved in asthmatic air-
way inflammation. Duan and co-authors [30] showed
that administration of the ERK1/2 inhibitor, U0126, to
ovalbumin (OVA) challenged mice, reversed the OVA-
induced increases in total cells and eosinophils. The same
group also studied bronchial rings from OVA sensitized
guinea pigs. Bronchial contractions and release of hista-
mine and peptidyl-leukotrienes in response to OVA chal-
lenge were similarly suppressed by U0126 pre-incubation
[31]. Eynott and colleagues recently showed that adminis-
tration of the JNK inhibitor, SP600125, to allergen chal-
lenged, sensitized rats decreased macrophage,
lymphocyte, eosinophil and neutrophil numbers in BAL
[32].

Mechanical stimulation activates MAP kinase signaling
proteins. In this study, we show that mechanical strain
increased the phosphorylation of p38 in a time-depend-
ent manner in NF. This result confirms data reported in
different types of cells, submitted to different types of
stress. In lung alveolar epithelial cells, Correa-Meyer et al
[2] demonstrated that cyclic stretch induced rapid
increases in ERK1/2 phosphorylation. Apical-to-basal
transcellular pressure applied to normal bronchial epithe-
lial cells increased ERK1/2 phosphorylation, but not p38
or JNK [4]. The ECM environment can influence mechan-
ical strain-induced phosphorylation of MAP kinase family
proteins. MacKenna and collaborators [33] showed
integrin- and matrix dependent phosphorylation of
ERK1/2, p38 and JNK in rat cardiac fibroblasts. Katsumi
and colleagues showed that mechanical stretch stimula-
tion of JNK was dependent on integrin binding to ECM
proteins [34]. Phosphorylation of the different proteins of

Effect of strain on proteoglycan production in normal (NF) and asthmatic fibroblasts (AF)Figure 5
Effect of strain on proteoglycan production in normal (NF) 
and asthmatic fibroblasts (AF). (A) versican, (B) decorin and 
(C) lumican production was detected by immunoblot in cell 
layer or in medium extracts. The data represent mean ± SE. 
*: p < 0.05
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the MAP kinase family in normal cells, is not yet fully
characterized, but depends upon the type of cells, the
ECM environment, and the precise strain applied.

In contrast to the data in normal airway fibroblasts, in AF,
mechanical strain had no effect on the activation of p38,
and resulted in decreased phosphorylation of ERK1/2. It is
possible that ERK1/2 and p38 were already maximally
activated in AF at baseline; hence they could not be further
activated by the additional stimulus of mechanical strain.
Indeed, the maximal absolute values of phospho-p38/
p38 and phospho-ERK1/2/ERK1/2 in NF subjected to
strain were roughly equivalent to the elevated values of
these molecules at baseline in AF. These data are consist-
ent with the idea that a balance between MAP kinases and
MAPK phosphatases, enzymes involved in turning off
kinase signaling, modulates the level of phosphorylation
in these cells. Along these lines, physical forces have been
shown to increase MAP kinase phosphatase expression in
vascular smooth muscle cells [35]. Another possibility is
that strain may have differentially activated phosphatases,
in AF. Our data differ from the data recently reported by
Kumar et al [5] in a mouse model of asthma. Stretch of
whole-lung parenchyma excised from aspergillus/OVA-
sensitized and challenged mice, resulted in increases in
ERK1/2 phosphorylation. The differences between these
data and that of the current study may relate to differences
between the mouse model and human asthma, the
response of other cell types included in the excised paren-
chymal strip preparation, the type of strain applied, etc.

Increases in JNK phosphorylation in response to mechan-
ical strain were significant in AF, but not in NF (although
a trend to increased JNK phosphorylation was observed).
However, whereas JNK inhibition abrogated the mechan-
ical strain-induced increase in versican protein in NF, no
effect was observed in AF. We focused on the JNK pathway
as, in the asthmatic cells, this was the only MAP kinase
which showed increased phosphorylation with applica-
tion of mechanical strain. As potential differences in phe-
notype of asthmatic cells was the prime focus of the
experiment, we concentrated our interest on this particu-
lar pathway. These data represent another example of the
differing phenotype of the asthmatic and control cell pop-
ulations. They may also reflect a greater difficulty in "turn-
ing off" an enhanced matrix response to mechanical strain
in asthmatic fibroblasts.

PGs are a heterogeneous family of ECM molecules that
consist of a core protein to which one or more gly-
cosaminoglycans are covalently attached. They subserve a
number of important biologic functions [36]. Because of
the hydrophilic structure of PGs, they have the capacity to
attract water into the extracellular matrix, thereby altering
tissue turgor and the viscoelastic properties of the matrix.
This is especially true for the large, hydrophilic PG, versi-
can. In in vitro studies, we have shown that specific degra-
dation of PG alters lung tissue viscoelasticity [37]. PGs
interact with various cytokines and growth factors and
affect cell migration and proliferation. They also play a
key role in collagen fibrillogenesis [36]. PGs have been

Effect of JNK inhibition on strain-induced versican production in (A) normal (NF) and (B) asthmatic fibroblasts (AF)Figure 6
Effect of JNK inhibition on strain-induced versican production in (A) normal (NF) and (B) asthmatic fibroblasts (AF). Versican 
was increased in response to mechanical strain in both sets of cells. However, JNK inhibition with SP600125 reversed the 
increase in NF only. Incubation with the vehicle, DMSO, had no effect. The data represent mean ± SE. *: p < 0.05
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implicated in the airway wall remodeling characteristic of
asthma. In postmortem lung tissue from patients dying
with fatal asthma, hyaluronan, versican, biglycan and
decorin were prominently localized in the airway wall
[38,39]. Lumican, biglycan and versican were increased in
the subepithelial layer of bronchial biopsies of mild asth-
matics patients, in comparison to normal control subjects
[40]. Fibroblasts from asthmatic subjects produce more
hyaluronan, perlecan, versican and biglycan, than cells
from normal subjects [41].

Mechanical strain increased versican protein in both AF
and NF. Previous studies have shown that mechanical
stimuli are involved in modulating ECM production
[42,43] Studies from our laboratory showed an increase in
versican mRNA in response to mechanical strain in both
NF and AF (the relative increase in signal was greater in
AF) and an increase in decorin mRNA in response to
mechanical strain in AF [14]. In the current study, the pat-
tern of increase in versican and decorin protein is consist-
ent with the mRNA data, although some degree of post-
transcriptional regulation seems likely. The ability of the
cells to alter matrix in response to mechanical strain may
represent an important regulatory mechanism – by chang-
ing the matrix surrounding the cell, the impact of the
mechanical signal could be modulated, both in terms of
the magnitude of strain to which the cell is exposed, and
the specific signaling pathways stimulated [33,34].

Conclusion
We have shown that MAP kinase phosphorylation is dif-
ferent in AF as compared to NF, and that MAP kinase
responses to mechanical strain vary in the two cell popu-
lations. Versican protein was increased in response to
mechanical strain in both AF and NF; this increase was
abrogated by JNK inhibition in NF, only. These data sug-
gest that different signaling pathways may be involved in
the response to mechanical strain, in asthmatic disease.
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