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Abstract
Background: Functional deterioration in cystic fibrosis (CF) may be reflected by increasing
bronchial obstruction and, as recently shown, by ventilation inhomogeneities. This study
investigated which physiological factors (airway obstruction, ventilation inhomogeneities,
pulmonary hyperinflation, development of trapped gas) best express the decline in lung function,
and what role specific CFTR genotypes and different types of bronchial infection may have upon this
process.

Methods: Serial annual lung function tests, performed in 152 children (77 males; 75 females) with
CF (age range: 6–18 y) provided data pertaining to functional residual capacity (FRCpleth, FRCMBNW),
volume of trapped gas (VTG), effective specific airway resistance (sReff), lung clearance index (LCI),
and forced expiratory indices (FVC, FEV1, FEF50).

Results: All lung function parameters showed progression with age. Pulmonary hyperinflation
(FRCpleth > 2SDS) was already present in 39% of patients at age 6–8 yrs, increasing to 67% at age
18 yrs. The proportion of patients with VTG > 2SDS increased from 15% to 54% during this period.
Children with severe pulmonary hyperinflation and trapped gas at age 6–8 yrs showed the most
pronounced disease progression over time. Age related tracking of lung function parameters
commences early in life, and is significantly influenced by specific CFTR genotypes. The group with
chronic P. aeruginosa infection demonstrated most rapid progression in all lung function
parameters, whilst those with chronic S. aureus infection had the slowest rate of progression. LCI,
measured as an index of ventilation inhomogeneities was the most sensitive discriminator between
the 3 types of infection examined (p < 0.0001).

Conclusion: The relationships between lung function indices, CFTR genotypes and infective
organisms observed in this study suggest that measurement of other lung function parameters, in
addition to spirometry alone, may provide important information about disease progression in CF.
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Background
Cystic fibrosis (CF) is the most common life-shortening
genetic disease among Caucasians, being caused by muta-
tions of the cystic fibrosis transmembrane conductance
regulator (CFTR) gene [1]. Dysregulation of epithelial
chloride channels results in dehydration of the luminal
surface of exocrine cells, increased mucus viscosity and
altered mucociliary clearance. The occurrence of these
changes most likely follows periciliary liquid layer deple-
tion and together are responsible for the CF phenotype [2-
5]. Recent data have linked the abnormal ion transport
properties of CF airway epithelia to depleted airway sur-
face liquid volume, reflecting the combined defects of
accelerated Na+ transport and the failure to secrete Cl-.
Depletion of a specific compartment of the airway surface
liquid, i.e. the periciliary fluid, appears to abrogate both
cilia-dependent and cough clearance [4,6]. Mucus clear-
ance is a major component of the lung's innate defense
mechanism. The efficiency of mucus clearance reflects in
part the volume of airway surface liquid (ASL) on airway
surfaces. The ASL is comprised of a periciliary liquid layer
(PCL), which lubricates the cell surface, and a mucus
layer, which traps airborne particles and pathogens [7].
Cystic fibrosis airways exhibit Na+ hyperabsorption and
Cl- hyposecretion, which leads to ASL volume depletion,
mucus stasis, and mucus plugging. These mucus plugs are
the site of persistent bacterial infections that lead to a mas-
sive neutrophil infux and raised immune responses that
promote airway remodeling [8]. Regulation of ASL vol-
ume is poorly understood [9], although Tarran et al.
recently showed that CF airway epithelia lack CFTR-
dependent Cl- secretion and exhibit Na+ hyperabsorption,
leaving CF cultures only partially able to adjust ASL vol-
ume [9,10]. Bacterial colonization, infection, and chronic
pulmonary inflammation develop subsequently. Pulmo-
nary complications account for most of the morbidity and
mortality in CF patients, and the majority of patients with
CF die from respiratory failure due to endobronchial
infection and neutrophil-dominated inflammation
[11,12]. Advances in the care of patients with CF have
improved survival, and as a result, patients with the dis-
ease now often live beyond the third decade [13]. The het-
erogeneous course of disease progression observed in CF
remains incompletely explained and most likely reflects
the influence of multiple, interrelated factors. These may
include differences in CFTR mutation and presence of
infective organisms within the respiratory tract [14,15].

Previous studies in patients with CF have demonstrated
the presence of ventilation inhomogeneities [16,17], pul-
monary hyperinflation [18-21] and gas trapping [22] as
early as during the first years of life [17-19], and these may
progress during childhood [16,20]. Only few observa-
tional population-based studies [23-26] have specifically
evaluated progression of lung function characteristics

such as airway obstruction, ventilation inhomogeneities,
pulmonary hyperinflation, and development of trapped
gas over time. We have previously reported observations
that inequalities in ventilation occur significantly earlier
in the course of lung function decline than other func-
tional characteristics [16]. Here we hypothesize that func-
tional consequences of lung disease in CF extend beyond
simple bronchial obstruction, and should be examined in
terms of alveolar volume, including gas trapping, as well
as alveolar ventilation.

In the current study we investigated (i) whether or not
pulmonary hyperinflation and/or trapped gas represent
further indicators of functional deterioration that should
be monitored during childhood. Moreover, we attempted
(ii) to define the role of specific CFTR genotypes and the
influence of PA infection upon rates of disease progres-
sion. Finally, we intended (iii) to demonstrate whether or
not those young children in whom respiratory dysfunc-
tion occurs earliest and with greatest severity, are more
likely to follow a more rapid decline in pulmonary func-
tion, consistent with the concept of functional tracking
over time. Progressive functional deterioration of this type
has been previously reported in several chronic respira-
tory diseases including bronchial asthma [27,28] chronic
lung disease of infancy [29] and cystic fibrosis
[16,25,26,30].

Study population and methods
Bernese Cystic Fibrosis Patient Data Registry
This prospective registry was initiated in 1978 as an exten-
sion of the American Cystic Fibrosis Patient Registry
founded by Warwick in 1966 [31], and comprises system-
atic clinical and lung function data obtained from CF
patients reviewed as inpatients and outpatients over a
time span of 28 years. This comprehensive source pro-
vided data for the observational cohort study which were
reviewed according to the following inclusion criteria: (i)
CF diagnosis based on the presence of characteristic phe-
notypic features [32,33], (ii) confirmed by a duplicate
quantitative pilocarpine iontophoresis sweat test measur-
ing both Na and Cl values > 60 mEq/L as well as by (iii)
genotype identification using extended mutation screen-
ing of both alleles [34,35], and (iv) complete documenta-
tion of a minimum of 4 lung function tests performed
annually between age 6–18 y. The study protocol was
approved by the Departmental Ethics Committee of the
University Children's Hospital and by the Government
Ethics Committee of the State of Berne, Switzerland. Parts
of the lung function data from this cohort have been
reported previously [16].

Pulmonary Function Measurements
Spirometry and flow volume curves were obtained by
whole body plethysmography using a volume-constant,
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pressure-variable plethysmograph with air bag body tem-
perature and pressure saturated (BTPS) compensation
unit (BodyScreen, Jaeger Würzburg, Germany) until
December 4, 1993. Thereafter, the MasterLab plethysmo-
graph was employed (MasterLab, Jaeger Würzburg, Ger-
many). This instrument uses electronic BTPS-
compensation. Children were requested to breathe at
coached normal frequency during shutter closure (no
panting) for measurements of functional residual capacity
(FRCpleth). Prior to plethysmographic measurements, rest-
ing end-expiratory lung volume (FRCMBNW) and quantifi-
cation of ventilation inhomogeneities (LCI) was
determined by open-circuit multibreath nitrogen washout
(MBNW) technique [36] using the Pediatric Pulmonary
Unit (SensorMedics 2200, Yorba Linda, Ca, USA). This
procedure enabled longitudinal assessment of the follow-
ing parameters: (i) FRCpleth measured by whole-body
plethysmography, (ii) FRCMBNW measured by MBNW
technique, combining both measurements to calculate
(iii) an index of the volume of trapped gas (VTG = FRCpleth
-FRCMBNW) [37] and (iv) effective specific airway resist-
ance (sReff). Following a short rest period, indices of
forced expiratory air flow limitation including (v) forced
vital capacity (FVC), (vi) forced expired volume in one
second (FEV1) and (vii) maximal expired volume at 50
percent of FVC (FEF50) were calculated from maximal
expiratory flow volume curves. All measurements were
stored for offline analysis and the 3–5 technically most
satisfactory maneuvers were chosen for analysis using a
computer system adapted for children (MasterLab, Jaeger
Würzburg, Germany). With the exception of LCI, all val-
ues were expressed as a standard deviation score (SDS)
based on gender- and age-specific regression equations
[38-40]. Interpretation of LCI data required a z-transfor-
mation of log-transformed gender-specific data obtained
in healthy subjects [38]. Technical details are given else-
where [16,41].

We have recently identified lung clearance index (LCI)
obtained by multiple breath nitrogen washout (MBNW)
technique [16], followed by MEF50 and FRCpleth as the
strongest indicators of disease progression. Furthermore,
LCI was observed to reflect progressive deterioration in
lung function earlier in life than alterations occurring in
FEV1. Assessment of the degree of airway obstruction
alone may therefore be inadequate for following progres-
sion of lung disease in CF. For example, in patients with
end-stage CF lung disease, pulmonary hyperinflation is
correlated with gas exchange characteristics [42]. Physio-
logically, at least five potential mechanisms of functional
deterioration exist that may alter gas exchange, including:
(a) progression of pulmonary hyperinflation, represented
by FRCpleth, (b) progression of ventilation inhomogenei-
ties (LCI), (c) development of trapped gas (VTG), (d) air-

way narrowing (sReff) and (e) small airway disease (FEV1
and FEF50).

Therefore, progression of disease as quantified by the
tracking of lung function decline was evaluated by stratifi-
cation of patients into 4 subgroups according to the fol-
lowing criteria:

1) Group FN included 24 patients with functionally nor-
mal FRCpleth and normal LCI at entry.

2) Group VIH comprised 71 patients in whom only venti-
lation inhomogeneities were present (normal FRCpleth;
LCI > 2SDS; no trapped gas).

3) Group PH included 29 patients with pulmonary hyper-
inflation (FRCpleth > 2SDS) in the absence of trapped gas.
Each of these children also had ventilation inhomogenei-
ties present (LCI > 2SDS).

4) Group PH&TG comprised 28 patients with pulmonary
hyperinflation (FRCpleth > 2SDS), trapped gas (VTG >
2SDS) and elevated LCI.

Genotype analysis
Genomic DNA was extracted from EDTA blood samples
using the QIAamp Maxi Kit (Qiagen) according to the
manufacturer's recommendations and quantified by spec-
trophotometry. In addition, a non-invasive method of
buccal cell brushing [43] was used to obtain DNA from
premature infants, recipients of previous blood transfu-
sions and infants with meconium ileus. Mutation screen-
ing of the entire coding sequences of the CFTR gene
(including the 27 exons and exon/intron boundaries,
intron 11 and 19, as well as the promoter region) was per-
formed for each patient using a well-established single
strand conformation polymorphism/heteroduplex
(SSCP/HD) analysis. This was followed by direct sequenc-
ing of the variants, thus permitting rapid and sensitive
detection of 97 – 98% of known and novel (newly identi-
fied) CF mutations, as previously described [34,44,45].

Microbiology
Sputum and throat swabs were obtained at each follow-up
visit and cultured for various bacterial species including
H. influenzae, S. aureus and P. aeruginosa [46]. Sampling,
transport, culture and identification of strains from respi-
ratory secretions were performed according to standard
procedures [46]. Sputum specimens were processed by the
Institute of Microbiology, University of Berne, where they
were inoculated on blood, chocolate and MacConkey
agars [47]. Strains of P. aeruginosa, Staphylococcus aureus
and Haemophilus influenzae were tested for antibiotic sus-
ceptibility by the Kirby-Bauer paper disk method.
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Data computation and statistical evaluation
In order to present individual values of lung function
numerically and independent of gender, age and growth
status, all lung function data were expressed as standard
deviation score (SDS). The value obtained by z-transfor-
mation [48] indicates the number of standard deviations
(SD) a CF-patient deviates from the gender- and age-spe-
cific regression equations for healthy subjects reported
previously [38-40]. Repeated measurements of lung func-
tion data were first calculated as mean ± SEM values per
year over age for synoptical presentation. Linear mixed-
effect model (LMM) analysis was used to assess the rela-
tionship between each lung function parameter and age
[16,49-52], (i) to obtain reliable estimates of individual
changes over time of an outcome, and hence, to examine
progression of each lung function parameter, and (ii) to
study the role of potentially associated factors such as spe-
cific CFTR genotypes or bacterial colonization over the
age range of 6–8 to 18 years. This technique is suited to
analysis of the association between time and covariates
from irregularly spaced serial data from individuals (i.e.
repeated measurements), without being affected by miss-
ing data [49-52]. The various lung function parameters
were modelled with age at observation as fixed effect, and
a patient-specific intercept as random effect. A t-test
assuming unequal variances was then performed to deter-
mine if regression slopes of the different lung function
parameters in the whole sample differed from zero, and to
test for differences of the regression slopes between
groups. Holm's modification of the Bonferroni correction
for multiple comparison was applied. The p-values signif-
icant at the 0.05 level after this correction are marked with
an asterisk in the text and tables. Results with a signifi-
cance level of p < 0.05 were considered statistically signif-
icant. Prism software (version 4.0, GraphPad Software,
Inc., San Diego, USA) was used for graphical, and SPSS
(version 11, SPSS Inc., Chicago, USA) for statistical analy-
sis.

Results
Characteristics of the study population
The current Bernese Cystic Fibrosis Patient Data Registry
contains data from a total of 190 CF patients who have
been followed over the last 28 years. From this collective
152 (76.8%) fulfilled the inclusion criteria defined for the
present study (Table 1). Fifteen patients have not yet
reached the age of 6 years, and in 23 CF patients less than
4 annual lung function tests were available. Gender was
approximately equally distributed. Within these 152 CF
patients a total of 1460 lung function tests were per-
formed, representing a median (range) of 10 (4 – 15) lung
function tests per child, or 83 (29 – 116) lung function
tests per year.

According to the frequencies in our population-specific
CFTR genotype distribution the patients were stratified
into 4 CFTR-specific groups (Table 1). Group 1 consisted
of those with a homozygous ∆F508 mutation (∆F508(2):
n = 86, 56.6%). Group 2 included compound heterozy-
gotes for the second most common mutation found in
Switzerland, 3905insT and ∆F508 (3905insT/∆F: n = 13,
8.6%). Compound heterozygotes for the nonsense muta-
tion R553X and ∆F508 constituted group 3 with the third
most common genotype (R553X/∆F: n = 10 6.6%),
whereas the fourth group comprised 43 miscellaneous
genotypes (28.3%).

Stratification into different types of bronchial infection
(Table 1) was performed by defining those free of any col-
onization (n = 6, 3.9%), those presenting with intermit-
tent colonization with one or more positive cultures of
either H. influenzae, S. aureus, or St. maltofilia (n = 34,
22.4%), those chronically infected with S.aureus (n = 19,
12.5%), those chronically infected by P. aeruginosa (n =
36, 23.7%), and those culture positive for both P. aerugi-
nosa and S. aureus (n = 57, 37.5%).

Progression of lung function over time
Figure 1 shows mean annual changes of static lung vol-
ume (panel A), changes in LCI, and sReff (panel B) as esti-
mates of intrapulmonary gas distribution and airway
narrowing, and changes in flow volume curve derived
indexes (panel C) in relation to patient age over an age
range of 6 to 18 years. Values are presented as mean z-
scores, equal to SDS ± SEM. FRCpleth, obtained by whole
body-plethysmography, increased from 1.43 ± 0.15 SDS
at age 6 y to 3.05 ± 0.22 SDS at the age of 18 y. Thus, while
38.7% of patients aged 6 to 8 yrs were found to have pul-
monary hyperinflation (SDS-value > 2), the proportion of
children continued to increase, with 67.0% observed to
have hyperinflation at 18 y. Trapped gas volume also
increased from 0.62 ± 0.16 at 6 y to 2.65 ± 0.22 at 18 y.
The proportion of patients with VTG increased from 15%
to 54% during this period. In contrast, FRCMBNW values
obtained by multibreath washout decreased during this
period from 0.98 ± 0.15 SDS at age 6 y to 0.41 ± 0,16 at
18 y.

Table 2 demonstrates the age related progression of all
lung function parameters with the exception of FVC as
assessed by LMM analysis and expressed as the changes
occurring in mean regression slope for each index. Rates
of progression were most significant for FEF50 (slope: -
0.505, p < 0.0001), sReff (slope: 0.381, p < 0.001), and LCI
(slope: 0.281, p < 0.001). Less pronounced progression
was also identified for pulmonary hyperinflation (FRC-

pleth: slope: 0.154, p < 0.0001),) and trapped gas (VTG:
slope: 0.185, p < 0.0001).
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Table 1: Patient cohort, data base characteristics, distribution of CFTR mutations, and stratification into different types of bronchial infection in study patients with cystic fibrosis

Patient (from database*) Follow-up statistic (from database*)

n % number of tests age ranges covered

all 152 total 1460 6 to 10 y 80%
- males 77 50.7 per child 10 (4–15) 11 to 15 y 71%
- females 75 49.3 per year 83(29–116) 16 to 20 y 39%

CFTR mutation stratification

n %

∆F508(2) 86 56.6 Miscellaneous: numbers in brackets
3905insT/∆F 13 8.6 ∆F508 and1717-1G>A(4), W1282X(4), 2347delG(3), G524X(2), Q525X(2), N1303K(2), 621+1G>T(1),
R553X/∆F 10 6.6 2176insC(1), 394delTT(1), 4005+1G-A(1). 420del9(1), E585X(1), G126D(1), G85E(1), R347P(1), 1078delT(1);
Miscellaneous 43 28.3 3905insT and1717-1G>A(1),K710X(1), M1101K(1), Q39X(1), P5L(1), R553X(1);

R553X andR553X(1); 
G542X and T5(3), G542X(1);
Q542X and3732delA(2);
N1303K and2347delG(1), 2789+5G>A(1);
1199delG andR560S(1).

Stratification into different types 
of infection

n %

free from any 6 3.9
intermittend with various* 34 22.4 * H. influenzae, S. aureus, St. maltofilia
S. aureus 19 12.5
P. aeruginosa 36 23.7
P. aeruginosa combined S. aureus 57 37.5

*Actual number of patients in database: 198
Number of patient under age of 6 years: 13
Number of patients with follow-up data less than 4 annual lung function tests: 23
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Table 2: Progression with age (slope of regression) assessed by linear mixed-effect model analysis (LMM) in 152 patients with cystic 
fibrosis, evaluated over an age-range of 6 to 18 years.

Progression with 
age of lung function

95% confidence interval Age as fixed effect

lower upper F-value Significance

FRCpleth 0.142 0.126 0.158 298.3 0.0001

FRCMBNW -0.062 -0.081 -0.043 42.1 0.001

LCI 0.240 0.204 0.276 174.4 0.0001

VTG 0.180 0.160 0.200 320.9 0.0001

sReff 0.373 0.319 0.427 182.1 0.0001

FVC 0.005 -0.023 0.033 0.1 n.s.

FEV1 -0.177 -0.206 -0.148 139.6 0.0001

FEF50 -0.474 -0.527 -0.420 304.0 0.0001

Progression of lung function with ageFigure 1
Progression of lung function with age. A) Changes assessed by repeated measurements of plethysmographic functional 
residual capacity (FRCpleth), functional residual capacity obtained by the multibreath nitrogen washout (FRCMBNW), and volume 
of trapped gas (VTG). VTG was calculated as the difference between FRCpleth and FRCMBNW. B) Changes of lung clearance index 
(LCI) as a measure of ventilation inhomogeneities and effective specific airway resistance (sReff), as measure of airway narrow-
ing. C) Changes of forced vital capacity (FVC), forced expired volume in one second (FEV1) and maximal expired flow at 50% 
FVC (FEF50) in relation to age. All parameters expressed as z-scores.
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Effect of early pulmonary hyperinflation and gas trapping 
on later functional outcome
Figure 2 shows the progression of FRCpleth (A) and VTG (B)
over time for each of the 4 functional groups, stratified
according to age at entry (age 6 to 8 yrs). Children initially
presenting with both pulmonary hyperinflation and
trapped gas (group PH&TG) demonstrated highest values
for both FRCpleth and VTG. These patients also showed con-
sistently higher degrees of hyperinflation over time in
comparison to those in whom pulmonary hyperinflation
occurred in the absence of trapped gases (group PH). Fur-
thermore, age related progression of disease was associ-
ated with development of similar degrees of gas trapping
between functional groups as evidenced by the similar
slopes of these parameters in Figure 2. Occurrence of ven-
tilation inhomogeneities in the absence of hyperinflation
was associated with both progression of both FRCpleth and
trapped gas. Presence of initially normal lung function or
early ventilation inhomogeneities still resulted in progres-
sive elevation of both FRCpleth and VTG over time. How-
ever, CF patients with early severe functional deficits

(groups PH and PH&TG) showed consistent differences
(p < 0.001) from the other groups, which persisted
throughout the entire duration of the study (i.e. demon-
strated tracking).

Relationship between lung function parameters and CFTR 
genotype
Associations between lung function and CFTR genotypes,
progression of changes in specific functional indexes
within CFTR genotype groups and comparisons between
functional groups are given in Table 3. Potential associa-
tions were assessed by LMM analysis incorporating data
from the 3 specific mutation groups (i.e. excluding the
group comprising miscellaneous genotypes). Age and the
3 most frequent CFTR groups were taken as fixed effects
and the patient-specific intercept as random effect. The
most significant age related progression was identified
within the 3905insT/∆F mutation group for FEF50 (slope:
-0.738) and sReff(slope 0.549; panel A). The effect of
mutation group was assessed by analyzing the position of
the intercept through the ordinate. This value was found

Progression of FRCpleth over time in 152 patients with lung function stratified at age 6 to 8 years into 4 functional severity groupsFigure 2
Progression of FRCpleth over time in 152 patients with lung function stratified at age 6 to 8 years into 4 func-
tional severity groups. Group PH&TG (pulmonary hyperinflation and trapped gas): FRCpleth and VTG > 2SDS; group PH (pul-
monary hyperinflation without trapped gas): FRCpleth > 2SDS; group VIH (ventilation inhomogeneities): LCI > 2SDS; group FN: 
functionally normal.
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to be significantly higher for LCI (5.077), and FEV1
(4.542, panel B). With the exception of LCI, significant
differences in the values for the regression slope were
found between CFTR genotype and lung function indices.
The strongest associations were observed for FEF50 (F =
14.255, p < 0.0001) and FEV1 (F = 13.066, p < 0.0001).
FEF50 differentiated best between CFTR genotypes, if
∆F508(2) group was taken as the baseline value (Table 3,
panel C). Children in whom the R553X/∆F mutation was
present demonstrated the lowest values for all lung func-
tion parameters at time of initial measurement (age 6 to 8
yrs). Those with the ∆F508(2) mutation had higher initial
values. Maximum values for parameters obtained at initial
measurement were observed in the 3905ins group.

Relationship between lung function and different 
combinations of infection
The impact of different types of infection on progression
of lung function is shown in Figure 3. Age and the 4 most
frequent types of infection were taken as fixed effects and
the patient-specific intercept as random effect. Children
with chronic P. aeruginosa infection (PA) showed the most
rapid rate of progression when examined for all lung func-
tion parameters. Within this group progressive changes in
parameter values were most rapid for FEF50 (slope: -
0.582) and sReff (slope: 0.480). Group effects, i.e. initial
already high intercept were detected for FEV1 (19.214),
and LCI (7.345,). Significant relationships were identified
between infection type and progression of lung function
indexes, with strongest associations observed for FEF50 (F
= 7.994, p < 0.0001) and FRCpleth (F = 6.020, p < 0.0001).
Of all the groups in which infection was present, those
with chronic S. aureus infection (SA) showed the least
aggressive rate of progression of functional index values.
Interestingly, although not significant but as tendency
observed for each lung function parameter, P. aeruginosa
combined with other infection (PA_comb) presented
with more progression than P. aeruginosa infection (PA)
alone. LCI proved to be the index most sensitive for differ-
entiating between infection types (p < 0.0001) when the
group free of any colonization or infection was taken as
baseline.

Discussion
This study demonstrates that progression of pulmonary
hyperinflation and the presence of trapped gas are impor-
tant mechanical features of disease evolution in patients
with cystic fibrosis. Data analyzed from a cohort of 152 CF
patients, revealed the presence of pulmonary hyperinfla-
tion in more than one third (37.5%) of cases as early as
age 6 to 8 years. In half of these (18.4%), pulmonary
hyperinflation was associated with trapped gas. Both
functional abnormalities deteriorated with age (Figure 2).
Ventilation inhomogeneities have been previously shown
to represent the earliest and most rapidly progressive func-

tional abnormality in CF [16]. The current findings sug-
gest that ventilation inhomogeneities are accompanied by
steadily increasing hyperinflation, gas trapping, airway
obstruction, and flow limitation. All patients identified as
having increased VTG also demonstrated increased values
for LCI. Rate of progression of functional abnormality was
most rapid within a subgroup of patients within whom
both pulmonary hyperinflation and trapped gas were
present (Figure 2).

The relationships between pulmonary hyperinflation and
gas trapping and deterioration of lung function in CF are
presented here using longitudinal data. Previous investi-
gations have demonstrated that pulmonary hyperinfla-
tion influences lung mechanics in terms of increased work
of breathing, greater severity of breathlessness, impaired
respiratory muscle function [53-58] and increased energy
expenditure and oxygen consumption [55,56,59]. Recog-
nition of functional deterioration is therefore critical to
the ongoing management of patients with CF. Trapped
gas occurs as a consequence of absent communicative
pathways between small and large airways, thus reducing
the alveolar surface area available for gas exchange
[37,42,60]. Pulmonary hyperinflation and the develop-
ment of trapped gas are closely associated with different
types of chronic bronchial infection, especially P. aerugi-
nosa (Figure 3). Of even greater interest, our results suggest
that the CFTR genotype plays an important role in deter-
mining the longitudinal functional progression of lung
disease in CF (Table 3).

Finally, this work in CF patients provides further confirm-
atory evidence for progressive tracking of lung function
abnormalities already observed in other chronic respira-
tory illnesses such as bronchial asthma [27] and chronic
lung disease of infancy [25]. Ranganathan et al. demon-
strated tracking between parameters of airway function
and growth in infants and young children [25]. Children
with CF and better initial FEV1 have a slower rate of
decline in lung function than those in whom initial FEV1
was already very low [61]. The authors concluded that
young children with good pulmonary function and inter-
current pulmonary illness need not be treated as aggres-
sively as children with documented lower FEV1. Our own
data support this finding, since children with evidence of
severe disease early in life experienced more aggressive
functional deterioration over the course of the study
period.

Changes of lung volume during disease progression in CF
Elevation of FRC represents an almost universal accompa-
niment of significant intrathoracic airway obstruction.
Elevated end-expiratory level in patients with severe lung
disease is achieved by a strategy adopted to increase expir-
atory flow, especially during exercise. Patients thus meet
Page 8 of 15
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Table 3: Progression with age of lung function within genetic groups stratified according frequency of CFTR mutations.

A Progression with age 
of lung function

B Comparison of progression between genetic groups C Comparison of progressions within 
groups in relation to ∆F508(2) *

D delta of Power 
analysis 0.8

Slopes within groups Intercept at age 6 to 8 yrs mean 
comparison

Slope differences 
(age range 6 to 18 yrs)

F-value sign. F-value sign. mean diff. sign.

FRCpleth ∆F508(2) 0.151 1.117 n.s. 3.979 0.008
3905insT/∆F 0.215 1.057 0.048 0.09154
R553X/∆F 0.165 0.120 n.s. 0.09969

LCI ∆F508(2) 0.247 5.077 0.002 0.491 n.s.
3905insT/∆F 0.291 1.865 0.006 0.200854
R553X/∆F 0.278 0.307 n.s. 0.236018

VTG ∆F508(2) 0.198 3.372 0.019 6.499 0.0001
3905insT/∆F 0.233 1.036 0.011 0.113801
R553X/∆F 0.256 0.065 n.s. 0.128347

sReff ∆F508(2) 0.405 0.849 n.s. 10.043 0.0001
3905insT/∆F 0.549 1.297 n.s. 0.305402
R553X/∆F 0.741 3.298 0.039 0.328812

FEV1 ∆F508(2) -0.185 4.542 0.004 13.066 0.0001
3905insT/∆F -0.216 2.502 0.009 0.16809
R553X/∆F -0.466 0.431 n.s. 0.18238

FEF50 ∆F508(2) -0.439 1.774 n.s. 14.255 0.0001
3905insT/∆F -0.738 1.011 n.s. 0.30235
R553X/∆F -1.029 2.952 0.002 0.32759

Misc -0.354

* adjusted for multiple comisons according Bonferroni
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their ventilatory requirements at rest by increasing breath-
ing frequency rather than tidal volume in order to mini-
mize the increase of resistive work associated with
thoracic wall excursion. However, pulmonary hyperinfla-
tion affects respiratory muscle function [62]. Elevation of
end-expiratory level above relaxation volume places an
extra load on the inspiratory musculature at end-expira-
tion, whereby an additional "threshold" load related to
the elastic recoil of the respiratory system must be over-

come prior to commencement of inspiratory flow. Hyper-
inflation, together with loss of static recoil occurring in
relation to airflow limitation results in altered respiratory
muscle function [55,56]. There continues to be only lim-
ited understanding of how respiratory muscle function is
altered in patients with hyperinflation. Animal experi-
ments indicate that hyperinflation is detrimental to the
functional effectiveness of the diaphragm, but may pro-
vide mechanical benefit to the parasternal intercostals

Progression with age within 5 different types of colonization or infection respectively, depicted for each lung function parame-terFigure 3
Progression with age within 5 different types of colonization or infection respectively, depicted for each lung 
function parameter. Slopes were calculated from the fixed values predicted according to group using linear mixed-effect 
model analysis. (PA: chronically infected by P. aeruginosa; PA_comb: chronically infected by P. aeruginosa and other bacteria; SA: 
chronically infected only by S. aureus; intermit.: intermittently colonized by several bacteria; free: free from any bacterial colo-
nisations).
Page 10 of 15
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[63]. Patients with severe hyperinflation demonstrate
more pronounced diaphragmatic shortening than inter-
costal and accessory muscle shortening [64]. These
patients also exhibit clear signs of reduced diaphragmatic
functional capacity which correlates with the degree of air-
flow obstruction [64,65]. Studies of interactions between
pulmonary hyperinflation and inspiratory muscle func-
tion have highlighted the reduced muscular efficiency and
predisposition to fatigue occurring in CF [57].

Preferential impairment of the peripheral skeletal muscu-
lature is frequently seen in patients with CF. Typically, res-
piratory muscle strength is preserved while the quadriceps
is weakened [56]. This observation is consistent with the
diaphragm benefiting from a continuous training stimu-
lus secondary to increased inspiratory impedance. There-
fore, hyperinflation does not impair force generation of
the diaphragm to the same extent in cystic fibrosis as may
occur in other chronic respiratory diseases. Normal inspir-
atory muscle strength is commonly observed in CF and
diaphragmatic adaptation in this condition may extend
beyond that usually observed in adult COPD, where max-
imal diaphragmatic strength is lower than in normal indi-
viduals. The relative contribution of inspiratory
musculature to overall respiratory muscle weakness in CF
patients has also been assessed [66]. Major determinants
of inspiratory muscle weakness include muscle mass,
hyperinflation, gas trapping and to a lesser extent nutri-
tional status [56]. Thus, gradual deterioration in pulmo-
nary function, together with an associated increase in
work of breathing and inspiratory muscle weakness all
play important roles in the development of ventilatory
failure [53,54,57,58].

The role of the development of trapped gas
Identification of early pulmonary hyperinflation associ-
ated with trapped gas as the most severe functional group
during childhood and adolescence may represent an early
warning signal. Early gas trapping in this setting appears
to progress to persistent and ongoing disruption of lung
mechanics, leading to impairment of gas exchange [60,67-
71], increased energy expenditure [59,72], and disruption
of normal chest wall motion and exercise performance
[73]. Together with chronic infection, poor energy intake
and a catabolic state [55,56,59], further deterioration of
respiratory muscle function occurs [55,56]. A reduction in
trapped gas volume in association with improved maxi-
mal working capacity is observed in CF patients following
long-term chest physiotherapy [74,75]. In normal sub-
jects, expiration to residual volume results in a degree of
small airway closure, some atelectasis of dependent lung
regions and gas trapping [76]. The extent to which this
occurs is related to age [77], as highlighted recently by
Milic-Emili [78]. Closure of small airways results in dis-
continuity of expiratory airflow. Healthy subjects main-

tain FRC above a critical volume at which airway closure
occurs (closing volume) and therefore demonstrate no gas
trapping [79]. In young children, closing volume and FRC
approximate each other closely [79], thus further potenti-
ating gas trapping. In the presence of disease, and particu-
larly in CF, impaired airway clearance mechanisms and
inflammatory changes associated with chronic infection
disrupt small airway patency, leading to discontinuity and
limitation of expiratory airflow. Loss of static recoil asso-
ciated with pulmonary hyperinflation may further aggra-
vate this process [80] and increase the potential for gas
trapping[79]. We have recently shown that an index of
ventilation inhomogeneity, the LCI, progresses with age
in patients with CF, particularly after the onset of chronic
P. aeruginosa infection [16] and allergic bronchopulmo-
nary aspergillosis (ABPA) [41]. Whilst an increase in gas
trapping results in a concordant rise in ventilation inho-
mogeneities, the degree to which airway closure occurs
will also depend upon the age-dependant relationship
between FRC and closing volume and on airway resist-
ance [77,79,81-83]. Since the separation between FRC
and closing volume is likely to be reduced at younger ages,
the appearance of severe ventilation inhomogeneities and
pulmonary hyperinflation in this age group may predis-
pose towards early gas trapping and earlier onset of age
related progression of lung function deterioration (track-
ing). Early identification of gas trapping may therefore be
critical to instituting therapeutic measures aimed at
retarding or reversing this situation.

Relationship between CFTR genotypes and progression of 
hyperinflation and gas trapping
A relationship between CFTR genotype and severity of
pulmonary disease in CF has proven difficult to establish.
Nevertheless, the variability of pulmonary function at
time of diagnosis in infants [21] and children [84-86] has
been found to be partially related to the genotype. In com-
parison to the inframe homozygotes ∆F508(2) and non-
sense R553X/∆F compound heterozygotes, patients
carrying one frameshift mutation 3905insT have a poorer
prognosis with respect to the onset of pulmonary disease,
progression of lung function, and mortality [87]. Schaedel
et al. used FEV1 % normal predicted to demonstrate a
slower rate of decline in patients with missense mutations
compared with ∆F508(2) homozygotes [86], and Cory et
al. used LMM analysis to show a slower rate of pulmonary
function decline in some patients with non-∆F508 muta-
tions [51]. We undertook a similar statistical approach to
evaluate potential associations between repeated lung
function measurements and the most frequent CFTR gen-
otypes in Switzerland, ∆F508(2), 3905insT/∆F and
R553X/∆F. Significant differences in lung function indices
were identified between the 3905insT/∆F compound het-
erozygote and ∆F508(2) homozygote mutation groups
for FRCpleth, LCI and VTG, as well as between R553X/∆F
Page 11 of 15
(page number not for citation purposes)



Respiratory Research 2006, 7:138 http://respiratory-research.com/content/7/1/138
compound heterozygotes and ∆F508(2) homozygotes for
sReff, and FEF50 (Table 3). Confirming previous findings
[15,21,51,88,89], our data demonstrate that the 3905insT
mutation is associated with severe lung disease, manifest-
ing early in life [21], whereas the R553X/∆F mutation
seems to provide milder pulmonary involvement during
the first 5 to 6 yrs of life, thereafter however, to be exposed
to a much more pronounced progression compared with
both the ∆F508 and the 3905insT/∆F. In addition, regres-
sions of fixed predicted values obtained by the LMM anal-
ysis indicate significantly higher rates of progression of
small airway disease in patients within the 3905insT/∆F
group compared to ∆F508(2) homozygotes. The effect is
even more pronounced for the R553X/∆F group. Thus, we
conclude that CFTR genotypes clearly act as an important
determinant of disease progression and hence outcome,
when lung function parameters are interpreted in terms of
variance-based data (z-scores), and in relation to gender-
and age-specific regression equations [38-40].

The role of environmental factors
In the present study patients chronically colonized with P.
aeruginosa showed a significantly worse disease course
(Figure 3) compared to other types of infection. This was
especially the case in relation to ventilation inhomogenei-
ties. This finding is consistent with observations of
Wilmott et al. showing a strong association between P.
aeruginosa status and mortality [90], and the associations
between FEV1 and P. aeruginosa infection found by Kerem
et al [91]. More noteworthy, is the finding that in addition
to age of onset of chronic P. aeruginosa infection, coloni-
zation status at the time of lung function evaluation is
important.

Methodological limitations
The current study represents a very large patient cohort,
many of whom were followed up over a long time period.
An important limitation of these types of data resides in
the ability to obtain repeated measurements of lung func-
tion annually, over a substantial range of time. However,
we obtained serial annual measurements over a 10-year
period in at least 50% of the children. Linear mixed-effects
model analysis provides an ideal statistical method for the
interpretation of repeated measurement data such as
these, particularly when repeated testing results in small
proportions of incomplete data. A second potential influ-
ence on the results of this type of analysis involves the use
of subgroups, since the relatively small number of
patients within each group may result in relatively high
levels of variability. The adequacy of stratification within
subgroups is critical to the interpretation of differences
observed in outcome measures between each subgroup.
Whilst stratification of bronchial infection subgroups was
adequate, stratification of specific CFTR genotypes
required a frequency based approach to search for signifi-

cant associations. This finding may be intriguing for some
research groups where genotype-phenotype associations
with pulmonary involvement have not been able to be
identified in CF. Whilst well-established associations
between pancreatic insufficiency and genotype are recog-
nised based on a clear "on-off" selection, studies investi-
gating lung function indexes and genotype associations
may need to consider several functional parameters in
order to clearly identify those likely to be affected by
mutational changes. Our results suggest that parameters
representing pulmonary hyperinflation, ventilation inho-
mogeneities, gas trapping and airway narrowing are
required to be considered in addition to those quantifying
the degree of bronchial obstruction. Moreover, lung func-
tion data must be presented in a form independent of gen-
der and growth status (z-transformation). The current
study presents longitudinal data and expresses changes in
SDS in terms of cross-sectional reference equations [16].
The volume of trapped gas was calculated as the difference
between FRC measured plethysmographically (FRCpleth)
and by the FRC obtained by gas washout (FRCMBNW). It
must be borne in mind that the difference between these
two values provides an index that correlates with trapped
gas, but is not equal to trapped gas. In the presence of sig-
nificant airway obstruction, FRC is overestimated by
plethysmography. However, we used a non-panting
method that reduces this artifact by allowing greater time
for equilibration between alveolar and mouth pressure.
Finally, genotype-phenotype association studies investi-
gating pulmonary involvement in CF are complex and
require determination of factors such as available lung
function parameters and duration of life span during
which data are acquired. A specific question is how the
genetic background should be categorized. Possible cate-
gorizations might include ∆F508 versus non-∆F508, or in
terms of molecular mechanisms and consequences
observed at the gene or protein level. It has to be kept in
mind, that our cohort study represents primarily the CFTR
genotype distribution for Switzerland, where a substantial
proportion of patients carry the severe CF mutation
(3905insT/∆F), which is associated with the highest mor-
tality rate [21,37,44,88].

Summary
This study demonstrates that pulmonary hyperinflation
and development of trapped gas represent major func-
tional features of disease progression in children with CF.
Children with severe pulmonary hyperinflation and gas
trapping at age 6–8 y have the most significant rate of dis-
ease progression over time. As has been reported previ-
ously in childhood asthma, tracking of lung function
abnormalities in CF commences early in life, and is con-
siderably influenced by the CFTR genotype. Furthermore,
the present study shows that FRCpleth, and hence the
degree of pulmonary hyperinflation best differentiate
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between different types of bronchial infection. Chronic P.
aeruginosa infection appears to be the most important
infective contributor to disease progression. The observed
associations between CFTR genotypes and lung function
characteristics, as well as the associations between differ-
ent types of bronchial infection with pulmonary hyperin-
flation stress the need to include a range of tests when
assessing these patients, rather than relying simply on
spirometry. Early assessment of airway obstruction, pul-
monary hyperinflation and gas trapping in addition to
ventilation inhomogeneities and in conjunction with
CFTR genotyping provides a means for monitoring func-
tional progression in CF disease.
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