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Abstract
Background: Transforming growth factor beta (TGFβ), a multifunctional cytokine, plays a crucial
role in the accumulation of extracellular matrix components in lung fibrosis, where lung fibroblasts
are considered to play a major role. Even though the effects of TGFβ on the gene expression of
several proteins have been investigated in several lung fibroblast cell lines, the global pattern of
response to this cytokine in adult lung fibroblasts is still unknown.

Methods: We used Affymetrix oligonucleotide microarrays U95v2, containing approximately
12,000 human genes, to study the transcriptional profile in response to a four hour treatment with
TGFβ in control lung fibroblasts and in fibroblasts from patients with idiopathic and scleroderma-
associated pulmonary fibrosis. A combination of the Affymetrix change algorithm (Microarray Suite
5) and of analysis of variance models was used to identify TGFβ-regulated genes. Additional criteria
were an average up- or down- regulation of at least two fold.

Results: Exposure of fibroblasts to TGFβ had a profound impact on gene expression, resulting in
regulation of 129 transcripts. We focused on genes not previously found to be regulated by TGFβ
in lung fibroblasts or other cell types, including nuclear co-repressor 2, SMAD specific E3 ubiquitin
protein ligase 2 (SMURF2), bone morphogenetic protein 4, and angiotensin II receptor type 1 (AGTR1),
and confirmed the microarray results by real time-PCR. Western Blotting confirmed induction at
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the protein level of AGTR1, the most highly induced gene in both control and fibrotic lung
fibroblasts among genes encoding for signal transduction molecules.

Upregulation of AGTR1 occurred through the MKK1/MKK2 signalling pathway.
Immunohistochemical staining showed AGTR1 expression by lung fibroblasts in fibroblastic foci
within biopsies of idiopathic pulmonary fibrosis.

Conclusions: This study identifies several novel TGFβ targets in lung fibroblasts, and confirms
with independent methods the induction of angiotensin II receptor type 1, underlining a potential
role for angiotensin II receptor 1 antagonism in the treatment of lung fibrosis.

Background
Transforming Growth Factor beta (TGFβ) is a multifunc-
tional cytokine that regulates a variety of physiological
processes, including cell growth and differentiation, extra-
cellular matrix production, embryonic development and
wound healing [1]. Altered expression of TGFβ plays a
crucial role in organ fibrosis, hypertrophic scarring, can-
cer, autoimmune and inflammatory diseases [2].

In the lung, TGFβ is consistently linked with progressive
fibrosis [3-5]. Increased expression of TGFβ has been
reported in a variety of fibrotic lung diseases [6,7,3],
including idiopathic pulmonary fibrosis (IPF), a relent-
lessly progressive fibrotic lung disease with a median sur-
vival from diagnosis of only two years [8], and pulmonary
fibrosis associated with systemic sclerosis, one of the lead-
ing causes of death in scleroderma patients [9]. Animal
models also support a central role played by TGFβ in lung
fibrosis. Intra-tracheal adenovirus-mediated TGFβ gene
transfer causes severe lung fibrosis extending to the
periphery of the lungs [5]. Mice lacking alphavbeta 6, an
integrin which is crucial to the release of active TGFβ from
latent extracellular complexes, develop lung inflamma-
tion but are strikingly protected from bleomycin-induced
lung fibrosis [10]. IL-13 overexpression induces lung
fibrosis which is mediated via TGF-β1 induction and acti-
vation [11]. Experimental inhibition of TGFβ with neu-
tralizing antibodies, soluble receptors, or gene transfer of
the TGFβ inhibitor Smad7, inhibits fibrosis in animal
models [12-14].

Lung fibroblasts are the main cell type responsible for
excessive extracellular matrix synthesis and deposition in
fibrosing lung disorders [15]. TGFβ modulates fibroblast
function through several mechanisms, including induc-
tion of extracellular matrix protein synthesis and inhibi-
tion of collagen degradation [1]. However, knowledge of
TGFβ targets in adult lung fibroblasts is still limited to a
small number of genes. Oligonucleotide array technology
allows the simultaneous assessment of thousands of genes
providing a global gene expression profiling of the
response to a stimulus. The response to TGFβ has been
investigated using oligonucleotide microarrays in kerati-

nocytes [16] as well as in dermal [17] and in a human fetal
lung fibroblast line [18], but not in primary human adult
lung fibroblasts. Fibroblastic responses are likely to vary
with the origin and developmental state of the cells [19],
and a detailed study of TGFβ responses in adult lung
fibroblasts is needed to gain further insights into the fibro-
proliferative process in the lung.

We therefore quantified gene expression by oligonucle-
otide microarrays of adult lung fibroblasts (derived from
biopsies of normal and both idiopathic and scleroderma-
associated pulmonary fibrosis) in response to TGFβ, and
identified several novel TGFβ targets among the wide vari-
ety of genes regulated by this cytokine. Of these, we par-
ticularly focused on angiotensin II receptor type 1, the most
highly TGFβ-induced gene among those encoding for sig-
nal transduction molecules.

Methods
Cell culture
Primary adult lung fibroblasts were cultured from three
control samples (unaffected lung from patients undergo-
ing cancer-resection surgery) and from open-lung biopsy
samples of lung fibrosis patients, three with idiopathic
pulmonary fibrosis (IPF) [8] and three with pulmonary
fibrosis associated with the fibrotic disease systemic scle-
rosis [9]. Independent reviews of the clinical (SV, ER) and
histopathologic diagnosis (AGN) were performed. All the
idiopathic pulmonary fibrosis biopsies were characterized
by a usual interstitial pneumonia pattern (UIP), whereas
all of the scleroderma-associated pulmonary fibrosis were
classified as non-specific interstitial pneumonia (NSIP)
[8]. Verbal and written consent was given by all subjects;
authorization was given by the Royal Brompton Hospital
Ethics Committee. Fibroblast culture conditions were as
previously described [20]. At confluence, lung fibroblasts
(all between passages 4–5) were serum-deprived for 16
hours, and exposed to either 4 ng/ml of activated TGF-β1
(R&D Systems) or serum-free culture medium for four
hours. The concentration and time point of TGFβ used in
our experiments was determined from ongoing studies
within our laboratory, in which a 4 hour treatment with
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TGFβ 4 ng/ml was found to show significant induction of
selected known direct TGFβ target genes, including CTGF.

RNA isolation and gene array analysis
At the end of the treatment period with or without TGFβ,
total RNA was harvested (Trizol, Life Technologies), quan-
tified, and integrity was verified by denaturing gel
electrophoresis.

Preparation of RNA samples for chip hybridization fol-
lowed Affymetrix (Affymetrix, Santa Clara, California)
protocols. Each RNA sample derived from an individual
fibroblast line was hybridized on a separate microarray
chip. Hybridization of cRNA to Affymetrix human
U95Av2 chips, containing approximately 12,000 well
characterized human genes, signal amplification and data
collection were performed using an Affymetrix fluidics
station and chip reader, following Affymetrix protocol.
Scanned files were analyzed using Affymetrix Version 5.0
software (MAS5). Chip files were analyzed by scaling to
an average intensity of 150 per gene, as recommended by
Affymetrix. Reproducibility was assessed using two pairs
of RNA samples from the same control line, TGFβ-treated/
untreated; the concordance correlation coefficients were
of 0.979 and 0.983, respectively.

TGFβ response was analyzed by using a combination of
the MAS5 Affymetrix change algorithm and of ANOVA
models. According to Affymetrix criteria, in each TGFβ-
treated/medium only pair, genes were defined as differen-
tially regulated (either up or down) by TGFβ only when
identified as significantly increased (I) or decreased (D) as
determined by the Affymetrix change algorithm, with a
change p value<0.001, and were detected as Present
(according to the "absolute call"obtained by an Affyme-
trix algorithm) at least in the samples with the highest
count (i.e. medium only in the case of D and TGFβ in the
case of I). Genes were defined as TGFβ-responsive in nor-
mal human lung fibroblasts when they fulfilled all of the
following three conditions: a) they were detected as TGFβ-
regulated by Affymetrix criteria (see above) in at least two
of the three control pairs; b) they showed a mean fold
change after TGFβ of at least 2 (or lower than 0.5) in con-
trol fibroblasts; c) either a two-way ANOVA including
only control fibroblasts detected a significant (p < 0.05)
increase or decrease in control fibroblasts after TGFβ or
they were also found to be responsive in at least four of
the six fibrotic fibroblast lines and a significant effect (p <
0.05) of treatment (with TGFβ) was detected by a repeated
measure ANOVA model including all the samples and
adjusting for individual samples, disease, and interaction
between treatment and disease. All statistical analyses
were performed on log transformed data to reduce ine-
qualities of variance. Thus, the latter ANOVA model could
detect genes which were equally up- or down-regulated in

normal and fibrotic fibroblasts, taking advantage of the
larger number of samples, while the first model (equiva-
lent to a paired t test) could detect changes possibly occur-
ring in controls but not in fibrotic cell lines.

Except for unknown genes, all gene symbols and names
are given according to the nomenclature proposed by the
Human Genome Organization (HUGO) Gene Nomen-
clature Committee.

Real time-PCR
Real time PCR (RT-PCR) was performed to confirm
selected novel TGFβ targets in lung fibroblasts. Adult lung
fibroblast lines [three control and three fibrotic (IPF)]
were treated with or without TGFβ (4 ng/ml) for four
hours. Total RNA was isolated from treated and untreated
samples using Trizol (Life Technologies) and the integrity
of the RNA was verified by gel electrophoresis. Total RNA
(1 microgram) was reverse transcribed in a 20 µl reaction
volume containing oligonucleotide dTs (dT18) and ran-
dom decamers (dN10) using M-MLV reverse transcriptase
(Promega) for 1 hour at 37°C. The cDNA was diluted to
100 µl with DEPC-treated water and 1 µl was used per
real-time PCR reaction. A set of eight standards containing
a known concentration of target amplicon was made by
PCR amplification, isolation by gel electrophoresis
through a 2% agarose gel followed by gel purification
using QIAquick PCR purification spin columns (Qiagen).
The concentration of the amplicon was measured by spec-
trophotometry and diluted in DEPC-treated water con-
taining transfer RNA (10 µg/ml) to make standards of 10
fold dilutions from 100 pg/ µl to 0.01 fg/ µl. The target
was measured in each sample and standard by real-time
PCR using FastStart DNA Master SYBR Green (Roche
Applied Science) as described by the manufacturer, in half
the reaction volume (10 µl). Samples and standards were
amplified for 30 to 40 cycles with the appropriate primers
(Molecular Biology Unit, KCL School of Biological Sci-
ences) at least in duplicate. The amount of target in the
sample in picograms was read from the standard curve
and values were normalised to 28S ribosomal RNA (pg of
target/pg of 28S ribosomal-RNA). The oligonucleotide
primer sequences are listed (5'-3'): angiotensin II receptor
type1 (AGTR1) primers: forward TGC TTC AGC CAG CGT
CAG TT and reverse GGG ACT CAT AAT GGA AAG CAC;
SMAD specific E3 ubiquitin protein ligase 2 (SMURF2): for-
ward AAC AAG AAC TAC GCA ATG GGG and reverse GTC
CTC TGT TCA TAG CCT TCT G; nuclear receptor co-repressor
2 (NCOR2): forward CAG CAG CGC ATC AAG TTC AT
and reverse GTA ATA GAG GAC GCA CTC AGC; bone mor-
phogenetic protein 4 (BMP4) primers: forward CTA CTG
GAC ACG AGA CTG GT and reverse GAG TCT GAT GGA
GGT GAG TC.
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The results were analyzed using Student's paired t-test
after logarithmic transformation, and statistical signifi-
cance was taken as a p value of <0.05.

Western blot analysis of TGFβ-induction of angiotensin II 
receptor 1
Lung fibroblasts were grown to confluence in DMEM with
10% FCS. At confluence, lung fibroblasts (all between
passages 2–5) were serum-deprived overnight, and
exposed to either 4 ng/ml of activated TGF-β1 (R&D Sys-
tems) or serum-free culture-medium with the addition of
0.1% BSA for 24 hours. To determine the signalling path-
ways through which TGFβ induces AGTR1, lung fibrob-
lasts were treated with specific inhibitors 30 minutes
before treatment with TGFβ. These included the dual
MKK1/MKK2 inhibitor U0126 (10 µM) and predominant
MKK1 inhibitor PD98059 (50 µM), known to inhibit
MKK2 only weakly [21], as well as the p38 MAPK inhibi-
tor SB 202190 (30 µM). Cell layer lysates were examined.
Cell protein (10 µg/sample) was heated to 99°C for 5
min, loaded into sample wells, resolved on a 12% tricine
SDS-polyacrylamide gel (Novex, San Diego, CA), and run
at 120 V for 2 h. The separated proteins were transferred
onto nitrocellulose membranes at 30V for 90 minutes.
Membranes were blocked by incubation for one hour
with 5% non-fat milk in phosphate buffered saline (PBS)
containing 0.1% Tween 20. They were then washed and
incubated overnight at 4°C in a 1:500 dilution of rabbit
anti-angiotensin II receptor 1 polyclonal antibody (Santa
Cruz Biotechnology), followed by a three-time wash in
PBS and incubation in 1:1000 goat anti-rabbit bioti-
nylated IgG (Vector Laboratories, Peterborough, UK) for
60 min at room temperature. Membranes were washed
three times in PBS, and the signal was amplified/detected
by using the ECL protocol as described by the manufac-
turer (Amersham plc, Little Chalfont, UK). Films were
analysed by laser scanning densitometry on an Ultrascan
XL (LKB-Wallac, UK). Data were analyzed by using Stu-
dent's paired t test after log transformation and a p
value<0.05 was considered significant.

Immunohistochemistry
The distribution of staining for AGTR1 was assessed by
immunohistochemistry in surgical lung biopsies from
four patients with idiopathic pulmonary fibrosis (IPF),
meeting the diagnostic criteria of the American Thoracic
Society/European Respiratory Society Consensus Classifi-
cation [8], and in control biopsies (normal periphery of
resected cancer) from three patients undergoing cancer
resection surgery. Paraffin-embedded sections were
dewaxed with xylene, hydrated and heated in the micro-
wave at 120 degrees for 30 minutes in citrate buffer (10
mM pH 6.0).

Slides were then briefly rinsed in PBS, blocked with 10%
normal goat serum for 20', incubated with rabbit polyclo-
nal anti-human AGTR1 antibody (N-10, 1:50, Santa Cruz
Biotechnology, Santa Cruz, Calif) for one hour at room
temperature. After washing with PBS, sections were incu-
bated with biotinylated goat anti-rabbit IgG diluted in
PBS (1:200) for 30 minutes, rinsed, and finally incubated
with Vectastain Elite STR-ABC reagent (Vector Laborato-
ries) for 30 minutes. After washing, sections were visual-
ized using 3-amino-9-ethylcarbazole chromogen and
H2O2 as substrate (SK-4200; Vector Laboratories). Sec-
tions were then washed in tap water, counterstained with
Carrazzis hematoxylin, and mounted with Gelmount
(Biomeda, Foster City, CA) for examination using an
Olympus BH-2 photomicroscope. Controls included an
exchange of primary antibodies with goat matched anti-
bodies. To confirm staining specificity, sections were also
incubated with either nonimmune rabbit IgG control or
secondary antibody only.

Results
Microarray analysis of TGFβ-response in primary adult 
lung fibroblasts
According to the criteria outlined in the methods, a four
hour treatment with TGFβ was found to regulate 129 tran-
scripts in human lung fibroblasts. TGFβ-responsive tran-
scripts included genes with roles in gene expression,
matrix formation, cytoskeletal remodelling, signalling,
cell proliferation, protein expression and degradation, cell
adhesion and metabolism. A complete list of TGFβ-regu-
lated genes is provided (see Additional file 1). The com-
plete set of gene array data has been deposited in the Gene
Expression Omnibus database with GEO serial accession
number GSE1724 http://www.ncbi.nlm.nih.gov/geo.

We did not observe a substantial degree of difference in
the response to TGFβ between the two fibrotic groups (idi-
opathic pulmonary fibrosis and scleroderma-associated
pulmonary fibrosis) and control lung fibroblasts. Once
the criteria outlined in the methods section and the p-
value for interaction with treatment had been taken into
account, there were no significant differences in the
response to TGFβ among the three groups except for two
genes, KIAA0261 (probe N: 40086_at), an unknown gene
more upregulated in IPF (median fold change 2.2) than in
scleroderma-associated pulmonary fibrosis (1.5) and in
controls (1.3), and BTG1 (probe N: 37294_at), which was
only slightly more downregulated in scleroderma-associ-
ated pulmonary fibrosis (fold change:0.4) than in IPF
(0.6) and in controls (0.7). As both the number of genes
and the magnitude of the differences were minimal, they
were not considered meaningful and were not investi-
gated further. Among genes responding significantly to
TGFβ in control lung fibroblasts, as assessed by ANOVA
analysis, none changed in opposite directions in either of
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the fibrotic groups. All the genes that responded signifi-
cantly in the control group alone, were also TGFβ-respon-
sive when analysis was extended to include the fibrotic
cell lines. Furthermore, none of these genes responded
differently to TGFβ between the two fibrotic groups,
which are thus presented together in Tables 1 and 2.

For the purpose of this study, we will concentrate on genes
involved in transcriptional regulation, cytoskeletal/extra-
cellular matrix organization, and signal transduction
(Tables 1 and 2).

Control of transcription
TGFβ regulated a wide array of transcription factors (Table
1), including the known TGFβ target JUNB. Other TGFβ
targets in lung fibroblasts identified by this study included
Smad co-activators RUNX1 and CBFB, recently implicated
in the targeted subnuclear localization of TGFβ-regulated
Smads [22,23]. Transcriptional regulators involved in cell
cycle control/cell differentiation induced by TGFβ
included FOXO1A, NPAS2, and TIEG (TGFβ-inducible

early growth response), while ZFP36L2, a zinc finger tran-
scription factor linked to cell proliferation induction, was
repressed by TGFβ. Serum response factor (SRF) and MKL1
were also induced by TGFβ. Transcriptional repressors
induced by TGFβ included Ski, which together with Sno
interacts with Smad molecules to inhibit transcription
and may contribute to terminating TGFβ response [24]
and TCF8, a previously reported TGFβ target in fetal lung
fibroblasts [18]. Other transcriptional co-repressors
upregulated by TGFβ were nuclear co-repressors NCOR2
(or SMRT) and BHLHB2, which repress transcription by
recruiting histone deacetylases [25], and musculin (MSC).

Cytoskeletal/Extracellular matrix organization
Most genes in this category were known TGFβ targets. As
expected, transcripts involved in promoting extracellular
matrix formation and cell adhesion such as connective tis-
sue growth factor (CTGF) were upregulated, while we
observed inhibition of bone morphogenetic protein 4
(BMP4), a member of the TGFβ superfamily whose

Table 1: Transcription factor genes regulated by TGFβ in control and fibrotic lung fibroblasts (LF)

Gene Symbol Affymetrix Probe 
N

Control 
LF*

Fibrot
ic LF*

Gene name

BHLHB2 40790_at 6.0 5.1 basic helix-loop-helix domain containing, class B, 2
CBFB 41175_at 2.9 2.8 core-binding factor, beta subunit
EGR2 37863_at 52.0 3.3 early growth response 2 (Krox-20 homolog, Drosophila)
ETV6 38491_at 2.0 2.6 ets variant gene 6 (TEL oncogene)
FOXO1A 40570_at 3.8 6.0 forkhead box O1A (rhabdomyosarcoma)
JUNB 2049_s_at 3.7 4.2 jun B proto-oncogene
JUNB 32786_at 4.4 3.0 jun B proto-oncogene
LRRFIP1 41320_s_at 2.1 1.5 leucine rich repeat (in FLII) interacting protein 1
MKL1 35629_at 2.7 2.6 megakaryoblastic leukemia (translocation) 1
MSC 35992_at 2.4 1.7 musculin (activated B-cell factor-1)
NCOR2 39358_at 2.2 2.2 nuclear receptor co-repressor 2
NPAS2 39549_at 2.4 3.1 neuronal PAS domain protein 2
NR2F2 39397_at 0.4 0.5 nuclear receptor subfamily 2, group F, member 2
NRIP1 40088_at 2.3 1.8 nuclear receptor interacting protein 1
RUNX1 393_s_at 2.3 2.6 runt-related transcription factor 1 (aml1 oncogene)
RUNX1 39421_at 3.1 2.3 runt-related transcription factor 1 (aml1 oncogene)
RUNX1 943_at 2.2 2.7 runt-related transcription factor 1 (aml1 oncogene)
SKI 41499_at 2.5 2.1 v-ski sarcoma viral oncogene homolog (avian)
SMURF2 33354_at 2.2 2.2 E3 ubiquitin ligase SMURF2
SRF 1409_at 2.1 1.9 serum response factor
SRF 40109_at 2.2 2.0 serum response factor
TCF21 37247_at 0.2 0.4 transcription factor 21
TCF8 33439_at 2.8 1.8 transcription factor 8 (represses interleukin 2 expression)
TIEG 224_at 2.2 2.1 TGFB inducible early growth response
TIEG 38374_at 3.2 2.7 TGFB inducible early growth response
ZFP36L2 32587_at 0.3 0.4 zinc finger protein 36, C3H type-like 2
ZFP36L2 32588_s_at 0.3 0.3 zinc finger protein 36, C3H type-like 2
ZNF365 35959_at 14.2 2.5 zinc finger protein 365

*Mean fold change in mRNA abundance in TGFβ treated/untreated control and fibrotic lung fibroblasts (LF), respectively. Fibrotic lung fibroblast 
ratios represent the average values of idiopathic and scleroderma-associated pulmonary fibrosis lung fibroblasts.
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activity has recently been shown to be inhibited by CTGF
through direct binding [26].

TGFβ also induced matrix genes including elastin (ELN),
collagens (COL4A1), plasminogen activator inhibitor (PAI1
or SERPINE1) and PLOD2, an enzyme which stabilizes
collagen cross-links (Table 2). Tissue inhibitor of matrix
metalloproteinase 3 (TIMP3) was upregulated by TGFβ.
Genes involved in cytoskeletal organization induced by
TGFβ included known target tropomyosin (TPM1). Interest-

ingly, smoothelin, a smooth muscle gene recently reported
to be highly induced by TGFβ in fetal lung fibroblasts
[18], was also induced by TGFβ in this study, but at a
slightly lower fold ratio than that chosen for the selection
criteria (1.8).

Control of signal transduction
Among signalling molecules (Table 2), known targets
included upregulation of SMAD7 and downregulation of
SMAD3 [18,16]. Novel targets in lung fibroblasts included

Table 2: TGFβ-regulated signalling and ECM/cytoskeletal genes in control and fibrotic lung fibroblasts

Gene Symbol Affymetrix Probe N Control LF* Fibrotic LF* Gene name

Signal transduction
ACVR1 39764_at 2.2 1.7 activin A receptor, type I
ADM 34777_at 0.3 0.4 adrenomedullin
AGTR1 346_s_at 3.8 3.2 angiotensin II receptor, type 1
AGTR1 37983_at 5.1 5.9 angiotensin II receptor, type 1
BDKRB2 39310_at 0.4 0.4 bradykinin receptor B2
BMP4 1114_at 0.2 0.2 bone morphogenetic protein 4
BMP4 40333_at 0.1 0.3 bone morphogenetic protein 4
DYRK2 40604_at 3.0 3.0 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2
DYRK2 760_at 2.9 3.3 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2
DYRK2 761_g_at 3.3 2.2 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2
MLP 36174_at 2.4 1.7 MARCKS-like protein
PLK2 41544_at 0.4 0.6 polo-like kinase 2 (Drosophila)
RRAD 1776_at 3.0 5.2 Ras-related associated with diabetes
RRAD 39528_at 3.6 5.1 Ras-related associated with diabetes
SMAD3 38944_at 0.4 0.4 SMAD, mothers against DPP homolog 3 (Drosophila)
SMAD7 1857_at 2.3 2.2 SMAD, mothers against DPP homolog 7 (Drosophila)
SOCS1 41592_at 0.1 0.1 suppressor of cytokine signaling 1
SPRY2 33700_at 2.0 1.8 sprouty homolog 2 (Drosophila)
STK38L 32182_at 3.7 3.8 serine/threonine kinase 38 like
TGFBR3 1897_at 0.3 0.5 transforming growth factor, beta receptor III (betaglycan)
TNFRSF1B 1583_at 0.4 0.6 tumor necrosis factor receptor superfamily, member 1B
TNFRSF1B 33813_at 0.4 0.4 tumor necrosis factor receptor superfamily, member 1B
TSPAN-2 35497_at 4.2 5.0 tetraspan 2
Extracellular matrix remodelling/Cytoskeletal
COL4A1 39333_at 2.2 2.0 collagen, type IV, alpha 1
COMP 40161_at 2.7 5.3 cartilage oligomeric matrix protein
COMP 40162_s_at 5.0 18.9 cartilage oligomeric matrix protein
CTGF 36638_at 4.8 6.1 connective tissue growth factor
CYR61 38772_at 4.4 3.5 cysteine-rich, angiogenic inducer, 61
ELN 31621_s_at 4.9 3.7 elastin
ELN 39098_at 8.4 11.6 elastin
PLAUR 189_s_at 2.7 2.8 plasminogen activator, urokinase receptor
PLOD2 34795_at 2.5 1.8 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2
SERPINE1 38125_at 3.7 4.0 serine (or cysteine) proteinase inhibitor, clade E, member 1
SERPINE1 672_at 6.0 5.5 serine (or cysteine) proteinase inhibitor, clade E, member 1
TIMP3 1034_at 2.0 1.5 tissue inhibitor of metalloproteinase 3
TIMP3 1035_g_at 2.4 1.6 tissue inhibitor of metalloproteinase 3
TPM1 36790_at 2.3 1.7 tropomyosin 1 (alpha)
TPM1 36791_g_at 2.7 2.1 tropomyosin 1 (alpha)
TPM1 36792_at 2.5 2.0 tropomyosin 1 (alpha)

Mean fold change in mRNA abundance in TGFβ treated/untreated control and fibrotic lung fibroblasts (LF), respectively. Fibrotic lung fibroblast 
ratios represent the average of idiopathic and scleroderma-associated pulmonary fibrosis lung fibroblasts.
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SMURF2, a recently identified E3 ubiquitin ligase, which
negatively regulates TGFβ signalling by targeting both
TGFβ receptor-Smad7 complexes and Smad2 for ubiqui-
tin-dependent degradation [27,28]. At the investigated
timepoint, TGFβ downregulated the accessory receptor
betaglycan, a membrane anchored proteoglycan which
increases the affinity between TGFβ and type I and II
receptors. Interestingly, TGFβ upregulated activin A type I
receptor, a receptor for TGFβ family member activin,
whose stimulation induces fibroblast-mediated collagen
gel contraction [29]. Members of the Ras family of
GTPases, ARHB and RADD (Ras-related GTP-binding pro-
tein), involved in cytoskeleton remodelling, were also
upregulated by TGFβ. TGFβ also induced Dickkopf1
(DKK1), a potent inhibitor of Wnt/beta-catenin
signalling.

Of particular interest was the novel observation that TGFβ
upregulated angiotensin II receptor 1 (AGTR1) in lung
fibroblasts; conversely, the gene encoding for vasodilatory
peptide adrenomedullin (ADM) was inhibited by TGFβ.

Validation of selected TGFβ-induced genes by real time 
RT-PCR
Several of the genes regulated by TGFβ confirmed previ-
ously published findings, thus validating our methods,
including JUN-B, SMAD7, connective tissue growth factor,
elastin, and SERPINE1 [17,18,16,30]. To further consoli-
date our analysis, we selected a small group of novel TGFβ
targets to be confirmed by RT-PCR in both control and
fibrotic lung fibroblasts. These novel fibroblast TGFβ-
responsive genes included potential key candidates in the
regulation by TGFβ of lung tissue fibrosis and included
angiotensin II receptor type 1 (AGTR1), SMURF2, a gene
involved in terminating TGFβ signalling, NCOR2, a tran-
scriptional co-repressor and BMP4, a member of the TGFβ
family. Compared to untreated samples, we confirmed
that TGFβ upregulated AGTR1 (ratio = 2.4; p = 0.002),
SMURF2, (ratio = 1.8, p = 0.003), NCOR2 (ratio 1.4; p =
0.004), and downregulated BMP4 (ratio = 0.4; p = 0.009),
with no difference in the response between control and
fibrotic fibroblasts (Figure 1).

Induction of angiotensin II receptor type 1 by TGFβ
We focused on AGTR1 protein because, as shown by
microarray analysis, it was the most highly TGFβ-induced
gene among signaling molecules in both control and
fibrotic fibroblasts (Table 2). To verify whether AGTR1
mRNA upregulation corresponded to an increase in pro-
tein levels, we performed Western analysis on primary
human adult lung fibroblasts exposed to TGFβ or medium
alone in serum-free conditions for 24 hours. The intensity
of the angiotensin II receptor 1 immunoreactive band was
significantly increased in TGFβ-treated fibroblasts com-
pared to those treated with medium alone (2.4 fold; p <

0.001) (Figure 2). To identify the signalling pathways
through which TGFβ induces AGTR1, we evaluated
whether the ability of TGFβ to induce AGTR1 expression
in lung fibroblasts was blocked by specific signaling path-
way inhibitors. A 30 minute preincubation with the dual
MKK1/MKK2 inhibitor U0126 significantly inhibited
TGFβ induction of AGTR1 protein (p < 0.01), whereas
predominant MKK1 inhibitor PD98059 and p38 MAPK
inhibitor SB202190 had no significant effect (Figure 2).

AGTR1 expression in idiopathic pulmonary fibrosis lung 
biopsies
We assessed staining for AGTR1 in lung biopsies from
four patients with idiopathic pulmonary fibrosis and
compared it to that of three control lungs. In particular we
aimed to evaluate AGTR1 staining in fibroblastic foci,
aggregates of fibroblasts/myofibroblasts in close contact
with alveolar epithelial cells. Both in control and in idio-
pathic pulmonary fibrosis lung biopsies, AGTR1 immu-
noreactivity was observed in alveolar epithelial cells and
alveolar macrophages. In addition, the fibroblasts within
the fibroblastic foci present in idiopathic pulmonary
fibrosis biopsies stained positive for the receptor (Figure
3).

Discussion
In this study we report, for the first time, the transcrip-
tional profile in response to TGFβ in adult primary
human lung fibroblasts both from control and from
fibrotic lungs. Our analysis of the response to TGFβ
focused on TGFβ gene targets involved in transcription
and signalling, identifying a series of genes previously
unknown to respond to TGFβ in lung fibroblasts. These
included angiotensin II receptor 1, providing further
insights into links between TGFβ and angiotensin in the
pathogenesis of fibrosis [31,32].

Although gene expression profiling in response to TGFβ
has been investigated previously, earlier work has been
confined to skin fibroblasts [17], keratinocytes [16], and a
human fetal lung cell line [18], which is likely to respond
differently to TGFβ from the adult lung fibroblast. Our
data cannot be directly compared with the fetal lung
fibroblast profiling because of methodological disparities,
chiefly due to differences in the timing of the RNA collec-
tion. However, even restricting the comparison to results
obtained at similar time points, we found a significant dis-
similarity. Among transcription factors, only JUNB and
TCF8 were upregulated by TGFβ both in fetal [18] and in
adult lung fibroblasts, while all others differed between
the two cell types. Interestingly, in this study, TGFβ caused
an induction of both MKL1 and serum response factor,
while neither were upregulated in fetal lung fibroblasts.
The recently reported cooperation between these two
transcription factors in determining smooth muscle cell
Page 7 of 12
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Independent verification of microarray results by measurement of gene expression with real time-PCRFigure 1
Independent verification of microarray results by measurement of gene expression with real time-PCR. TGFβ treatment (4 ng/ml) for 
four hours induces expression of mRNA for angiotensin receptor 1 (panel a), nuclear receptor co-repressor 2 (NCOR2) (panel 
c) and SMURF2 (panel d) as well as inhibition of bone morphogenetic protein 4 (panel b) in three control lung fibroblast cell 
lines (dashed lines) and three fibrotic lung fibroblasts (solid lines).
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differentiation [33] suggests that they may play a similar
role in lung fibroblasts and suggests differences between
fetal and adult lung fibroblasts in the transcriptional pro-
grams involved in the TGFβ-induced acquisition of the
myofibroblastic phenotype.

In this study, we did not observe a substantial difference
in the response to TGFβ between lung fibroblasts from
two patterns of fibrotic lung disease and control lung
fibroblasts. In vivo heterogeneity between interstitial lung

fibroblasts may occur in fibrotic and normal lung, obscur-
ing the demarcation between normal and abnormal phe-
notypes, when cell lines are isolated using standard
techniques [34,35]. This may explain discrepancies
among studies on growth rate and resistance to apoptosis
in fibroblasts derived from fibrotic lungs [34,36]. In par-
ticular, the fibroblasts/myofibroblasts forming the fibrob-
lastic foci, observed to be linked to disease progression
[37], could differ from the remaining fibroblasts found in
the interstitium. The issue of sampling a population of
homogeneous lung fibroblasts will be the subject of fur-
ther investigation by using laser microdissection tech-
niques targeting fibroblastic foci coupled with new
technologies to amplify RNA from limited quantities of
tissue [38]. Further, it is possible that the absence of
striking differences in the response to TGFβ between dis-
ease groups and controls is due to a loss of the pro-fibrotic
phenotype in vitro, even though the gene expression pat-
terns of different passages of the same fibroblast line have
been observed to cluster together, indicating that the in
vitro phenotypes are stable through several passages in
culture [19]. Further, we ensured that RNA was extracted
from all fibroblast lines at comparable passages. Thus,
even though our study cannot exclude the presence of
subtle differences in the response to TGFβ, we have
observed that, overall, fibrotic lung fibroblasts retain the
capacity to respond to TGFβ, which could therefore be tar-
geted by pharmacological means.

Among the novel TGFβ targets identified by microarray
analysis in lung fibroblasts, we focused our attention on
the induction of angiotensin II receptor type 1 (AGTR1), as
its involvement is likely to significantly amplify the pro-
fibrotic actions of TGFβ. The ligand for this receptor is
angiotensin II, a vasoactive peptide which has been linked
to fibrogenesis in the kidney and in the heart [39,40].
Recent studies have indicated that a local renin-angi-
otensin system could also be involved in the development
of lung fibrosis [41,42]. Elevated angiotensin converting
enzyme levels have been found in bronchoalveolar lavage
(BAL) fluid from patients with idiopathic pulmonary
fibrosis [41]. Compared to controls, lung fibroblasts from
patients with idiopathic pulmonary fibrosis produce
higher levels of angiotensin II, shown to induce apoptosis
in alveolar epithelial cells through AGTR1 [31,43]. Block-
ade of angiotensin II or of AGTR1 attenuates lung collagen
deposition in animal models of lung fibrosis [42,32].
Interestingly, the modulation of AGTR1 could be cell
specific, as suggested by the report that TGFβ reduces
AGTR1 expression in cardiac fibroblasts [44].

In addition to Smad molecules, the classic signalling path-
way used by TGFβ family members, TGFβ also signals
through the mitogen-activated protein kinase (MAPK) sig-
nalling pathways [16]. In this study, TGFβ was found to

TGFβ treatment induces angiotensin II receptor 1 (AGTR1) protein expression in adult lung fibroblasts; the induction is mediated by MKK1/MKK2Figure 2
TGFβ treatment induces angiotensin II receptor 1 (AGTR1) pro-
tein expression in adult lung fibroblasts; the induction is mediated 
by MKK1/MKK2. Representative Western Blot (top) and 
average values (± SD) of angiotensin II receptor type 1 pro-
tein expression in lung fibroblasts treated with TGFβ (4 ng/
ml)with or without 1/2 hour pre-incubation with of one the 
following signalling inhibitors: U0126, PD98059, SB202190. A 
24 hour treatment with TGFβ induced an upregulation of 
AGTR1 protein (mean: 2.4 fold, **p < 0.001, Student's paired 
t-test). The induction of AGTR1 by TGFβ was specifically 
blocked by MKK1/MKK2 inhibitor U1026 (*p < 0.01 com-
pared with TGFβ-induced AGTR1, Student's paired t-test), 
but not by predominant MKK1 inhibitor PD98059 or p38 
inhibitor SB202190). The results are representative of three 
independent experiments on both control and fibrotic cell 
lines. As a loading control, Western analysis with an anti-
GAPDH antibody was also performed.
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induce AGTR1 via mitogen-activated protein kinase
kinase (MKK1/MKK2). The finding that the MKK1/MKK2
inhibitor U0126, but not the MKK1 inhibitor PD98059,
was able to suppress TGFβ-induced AGTR1 expression,
suggests that both MKK1 and MKK2 must be antagonized
in order to inhibit transcription.

The functional effects of AGTR1 stimulation in lung
fibroblasts are only partially known. Although two iso-
forms of angiotensin II receptor exist, AGTR1 and AGTR2,
the effects described so far of angiotensin II on lung
fibroblasts are ascribed to the type 1 receptor. AGTR1 has
been found to mediate mitogenesis in human lung
fibroblasts [45] and extracellular matrix synthesis in lung
[46] as well as in cardiac and dermal fibroblasts [47].
Whereas angiotensin II is known to induce TGFβ [46], the
regulation of AGTR1 by TGFβ has not, to our knowledge,
been previously reported in lung fibroblasts. Our data
support the concept of a positive feed back loop by which
TGFβ potentiates the pro-fibrotic actions of angiotensin II
by increasing AGTR1 expression, providing a mechanism
for the attenuation of the proliferative response to angi-

otensin II by TGFβ blockade [45]. Thus, cooperation and
amplification of pro-fibrotic effects between TGFβ and
AGTR1 are likely to be implicated in lung fibrosis. Inter-
estingly, adrenomedullin, a multifunctional vasodilatory
peptide that downregulates angiotensin II-induced colla-
gen biosynthesis in cardiac fibroblasts [48], was inhibited
by TGFβ, confirming a previous report [49], and suggest-
ing that TGFβ exerts a complex regulation over vasoactive
peptides and/or their receptors in lung fibroblasts.

AGTR1 was found to localize to fibroblasts within fibrob-
lastic foci in IPF/UIP biopsies. An increase in AGTR1 stain-
ing has been reported in the fibrotic regions surrounding
the bronchioles in chronic obstructive pulmonary disease
[50]. The finding that AGTR1 localizes to fibroblastic foci
in IPF biopsies supports the potential relevance of the
angiotensin system in this disease and suggests that the
pro-fibrotic role of AGTR1 in IPF is not limited to epithe-
lial cells [31]. Further studies are needed to assess the
functional effects of AGTR1 stimulation in lung fibrob-
lasts and to evaluate the biological role of AGTR1 in lung
fibrosis.

Angiotensin II receptor 1 staining in lung biopsies from control patients (A) and from patients with idiopathic pulmonary fibro-sis (B)Figure 3
Angiotensin II receptor 1 staining in lung biopsies from control patients (A) and from patients with idiopathic pulmonary fibrosis (B). 
Immunohistochemistry for the angiotensin II receptor 1 (AGTR1), counterstained with haematoxylin. AGTR1 positive staining 
is seen in alveolar macrophages, in epithelial cells and in fibroblastic foci (arrows) in usual interstitial pneumonia biopsies (panel 
B). Epithelial cells and alveolar macrophages express AGTR1 in control lung biopsies (panel A).
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Conclusions
Our findings confirm that in response to TGFβ, both con-
trol and fibrotic lung fibroblasts are potent effector cells
expressing a very wide range of genes that are likely to con-
tribute to the fibrotic process. In particular, we have
shown that TGFβ has the capacity to influence the expres-
sion of angiotensin II receptor type 1 both at the mRNA
and at the protein level. In view of the known induction
of TGFβ by angiotensin II [45], our findings support the
existence of a self-potentiating loop between TGFβ and
angiotensin II, resulting in the amplification of the pro-
fibrotic effects of both systems. Future treatment strategies
could be based on the disruption of such interactions.
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