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Abstract

Background: Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the
TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however
unknown and were explored in this study.

Methods: RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin
receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on
contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines
production by human lung parenchyma or bronchi explants and by lung macrophages.

Results: In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was
demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and
lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the
activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid
desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated
through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi
and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of
cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages.

Conclusions: We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1
being expressed and involved in contraction of human and guinea pig airways.

Background
The mammalian tachykinins are a family of structurally
related peptides which are derived from three distinct
genes. TAC1 encodes for substance P (SP) and neurokinin
A (NKA) through alternative splicing, while TAC3 encodes
for neurokinin B (NKB) [1,2]. TAC4 was identified recently
in lymphoid B haematopoietic cells of the mouse bone
marrow and encodes for hemokinin-1 (HK-1) [3]. The
same peptide is encoded by the rat TAC4 [4] and is conse-
quently named rat/mouse hemokinin-1 (r/mHK-1). In
human, TAC4 encodes for hemokinin-1 (hHK-1), but its
sequence is different from its murine counterpart. A more
detailed analysis of the TAC4 gene in humans showed that

it is spliced into four alternative transcripts (a, ß, g and δ)
that give rise to four different peptides which have been
named endokinins, endokinin A (EKA), B (EKB), C (EKC)
and D (EKD). Extensive TAC4 expression has been shown
in a number of murine tissues including brain, spleen, sto-
mach, skin, breast, bone marrow, thymus, prostate, uterus,
skeletal muscle, lymph node, eyes, as well as in lung [5]. In
human, TAC4 expression has been observed in several tis-
sues including brain, cerebellum, thymus, prostate, testis,
uterus, adrenal gland, fetal liver and spleen for aTAC4;
heart, liver adrenal gland, bone marrow, prostate and testis
for bTAC4, whereas g-and δTAC4 where ubiquitously
expressed, with the most prolific expression in the adrenal
gland and placenta [4-6]. TAC4 expression in human lung
was reported in multi-tissue cDNA expression panels, but
without distinction of the different anatomical entities
(bronchi, parenchyma...) [4,6].
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The biological action of tachykinins are mediated by at
least three different transmembrane G-protein coupled
receptors, namely NK1, NK2 and NK3 receptors which
are stimulated preferentially, but not exclusively by SP,
NKA and NKB, respectively [7-9]. r/mHK-1 has similar
affinity to SP at the human NK1 receptor [4,6,10-12],
while hHK-1 binds to the human NK1 receptor with a
14-fold lower affinity than SP [4]. Human HK-1 also
binds to the human NK2 and NK3 receptors, with an
affinity about 200-250-fold lower than for NK1 receptors
[4,10,13].
HK-1 is involved in a variety of biological effects.

Many studies have focused on its actions on immunolo-
gical regulation and inflammation. Indeed, r/mHK-1 was
initially found to be an important growth and survival
factor for mouse early B-cells [3,14-16] and can play a
role in murine T-cell development [15]. With respect to
smooth muscle preparations, r/mHK-1 was found to
cause a relaxation of the porcine coronary arteries [17]
but to induce a contraction of the isolated rat urinary
bladder [10], mouse and human uterus [18,19]. hHK-1
was also able to induce coronary vasodilatation followed
with coronary vasorelaxation in the isolated guinea pig
heart [20]. Numerous reports have focused on the invol-
vement of the nonadrenergic noncholinergic system in
the regulation of airway tone, demonstrating contractile
properties for SP and NKA in human bronchi [21-25]
and guinea pig airways [23,26]. Tachykinins released
from the sensory unmyelinated C-fibers can cause the
contraction of airway smooth muscle, an increase in vas-
cular permeability, glandular secretion, and in choliner-
gic neurotransmission [27]. Tachykinins have been also
involved in the recruitment and the activation of inflam-
matory cells such as mast cells [28], eosinophils [29],
neutrophils [30,31], lymphocytes [32], monocytes and
macrophages [33]. Tachykinins are also produced by
immune and inflammatory cells airway smooth muscle
cells, endothelial and epithelial cells, and fibroblasts
[3,14,34-36]. This non neuronal production may be
involved in the pulmonary effects of tachykinins. These
peptides can induce bronchoconstriction in man, asth-
matics being more sensitive than normal subjects, in
agreement with the in vitro enhanced sensitivity and
maximal response to tachykinins of human bronchi pre-
treated with serum from patients with atopic asthma
[37]. However, in contrast to the characterization of SP-
or NKA-mediated effects, little is known about the
expression of hHK-1 and the contractile and inflamma-
tory effects of this peptide in human airways. Thus, the
aims of the present study were to determine the pre-
sence of tachykinins, tachykinin receptors and tachykinins
degrading enzyme neutral endopeptidase (NEP) mRNAs,
and hHK-1 protein in human bronchial tissues, and to
characterize the effects of hHK-1, EKA/B (common

C-terminal decapeptide of EKA and EKB [6,38]), EKC
and EKD in human and guinea-pig isolated airways.
Finally, effects of hHK-1 on the production of cytokines
by explants of human bronchi or lung parenchyma and
by human lung macrophages were assessed in compari-
son to those of SP. We report for the first time the endo-
genous expression of TAC4 and hHK-1 in human
bronchi, together with a role of hHK-1 and endokinins in
the contraction of human and guinea pig airways.

Methods
Human bronchi and guinea pig airways preparations
Human bronchial tissues were removed from 47 patients
undergoing surgical resection at Foch Hospital (Sur-
esnes, France) or Val d’or Clinic (Saint Cloud, France)
for lung cancer (31 men and 16 women; age = 64 ± 9
years). Just after resection, segments of human bronchi
with an inner diameter (ID) of 1 to 3 mm were taken as
far as possible from the malignant lesion. Male Hartley
guinea pigs (Charles River, L’Arbresle, France) weighing
300 to 350 g were sacrificed by cervical dislocation, and
tracheas and proximal bronchi were removed. After the
removal of adhering lung parenchyma and connective tis-
sues, rings from human bronchi (5-7 mm long, 0.5-1 mm
ID) and guinea pig trachea (3 mm long, 3 mm ID) or
proximal airways (3 mm long, 1 mm ID) were prepared.
8 to 24 segments of human bronchi were obtained from
each patient, whereas 8 trachea segments and 2 to 3
main bronchi segments were obtained from each guinea
pig. For RT-PCR analysis, human bronchi were isolated
within 1 hour after resection, immediately disrupted and
homogenized in TRIzol reagent (Invitrogen) with a Potter
Elvehjem homogenizer, and homogenates were kept fro-
zen at -80°C until mRNA extraction. Experiments with
human lung tissues were approved by the Regional Ethics
Committee for Biomedical Research and animals were
used as recommended by animal care guidelines.

Reverse Transcriptase-Polymerase Chain Reaction (RT-
PCR)
Total RNA was extracted from human bronchi (n = 4)
using TRIzol reagent. After a DNase step (DNase I, Invi-
trogen), total RNA (1 μg) was reverse-transcribed using a
High Capacity RNA-to-cDNA Synthesis Kit (Applied
Biosystems, Les Ulis, France). The resulting product
(cDNA) was used as template in endpoint or real-time
PCR. Amplification was performed from 20 ng cDNA
with Power SYBR Green PCR Master Mix (Applied Bio-
systems) in a MiniOpticon Real-Time PCR Detection
System (Bio-Rad, Marnes-la-Coquette, France). Thermal
cycling conditions were designed as follows: initial dena-
turation at 95°C for 10 min, followed by 40 cycles at 95°C
for 15 sec and 60°C for 1 min. Total reaction volume was
25 μL with 300 nM of each reverse and forward primer.
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The primers used for tachykinins and their receptors
were designed against sequences common to all
described isoforms and were synthesized by Eurogentec
(Angers, France). The primer pairs used for PCR were
as follows: 5’-AAAGGGCTCCGGCAGTTC-3’ and
5’-TGCAGAAGAAATAGGAGCCAATG-3’ for TAC1;
5’-GAAGTCATGCATGTCACGTTTCTC-3’ and 5’-
GACTCTTCAAAAGCCACTCATCTCT-3’ for TAC3;
5’-TACGGCGAAGCTGTGCATT-3’ and 5’-TCACA-
CAAGGCCCACACTGA-3’ for TAC4; 5’-GTAGGG-
CAGGAGGAAGAAGATGT-3’ and 5’-CAAGGTGGT
CAAAATGATGATTGT-3’ for TACR1; 5’-GAGGCC-
GATGACGCTGTAG-3’ and 5’-CAAGACGCTCCTC
CTGTACCA-3’ for TACR2; 5’-ATATACCTGTC-
CACCGCAATGG-3’ and 5’-CGCTTCCAGAACTTCTT
TCCTATC-3’ for TACR3. Expected amplicon sizes were
91, 110, 90, 85, 84 and 80 bp respectively. For NEP, pri-
mer pair was 5’-GGAGCTGGTCTCGGGAATG-3’ and
5’-AGCCTCTCGGTCCTTGTCCT-3’ [39] (amplicon
expected size: 219 bp). To control for the recovery of
intact cellular RNA and for the uniform efficiency of
each reverse transcription reaction, a hypoxanthine phos-
phoribosyltransferase (HPRT) fragment was amplified by
real-time RT-PCR (primer pair: 5’-TAATCCAGCAGGT-
CAGCAAAG-3’ and 5’-CTGAGGATTTGGAAAGG
GTGT-3’; expected size: 157 bp) on the same plate as
that with tachykinins or tachykinins receptors cDNAs.
The absence of secondary, non-specific amplification
products in our experiments was assessed by analyzing
melting curves and by separating PCR reaction products
on agarose gel. The identity of each PCR product was
established by DNA sequence analysis. With each sam-
ple, control samples without the RT step or with water
instead of cDNA template were amplified to ensure there
was no genomic DNA contamination and that all
reagents were free of target sequence contamination. For
each tachykinin and tachykinin receptor gene, a positive
control sample of human fetal brain total mRNA
(Ozyme, Saint Quentin en Yvelines, France) was also
included in each run.

In vitro bronchomotor responses
Human bronchial rings and guinea pig tracheal and
bronchial rings were suspended on hooks in 5 mL organ
bath containing a modified Krebs-Henseleit solution
(NaCl 119, KCl 4.7, CaCl2 2.5, KH2PO4 1.2, NaHCO3 25
and glucose 11.7 mM), maintained at 37°C and oxyge-
nated with 95% O2 and 5% CO2. An initial tension of 2 g
was applied to tissues, according to previously
described protocols [21,26]. Changes of tension were
measured isometrically with Gould strain gauges (UF1;
Piodem, Canterburry, Kent, UK); and were recorded
and post-processed with IOX and Datanalyst softwares
(Emka Technologies France, Paris). During the initial

stabilization period (30 min), tissues were washed
every 10 minutes with Krebs-Henseleit solution. Phos-
phoramidon was used to inhibit enzymatic degradation
of tachykinins by NEP [21,40]. Phosphoramidon (10-6

M) was added in organ bath with or without NK1-,
NK2- or NK3-receptor antagonists (SR 140333, SR
48968 and SR 142801, 10-7 M) after the first stabiliza-
tion period. Antagonist concentrations were chosen
based on their reported affinities for human tachykinin
receptors [41-43] and on their ability to antagonize
HK-1-induced responses at similar concentrations in
other models [10,13,44]. Tissues were then equilibrated
1 hour and concentration-response curves to tachyki-
nins and related peptides were established by applying
cumulative concentrations of peptides at 5 to 10 min
intervals in semi-logarithmic increments, or by apply-
ing a single concentration of peptide. Only one con-
centration-response curve to tachykinins was recorded
in each strip, and each experiment was performed in
duplicate. Maximal response was determined by a final
addition of acetylcholine hydrochloride (ACh, 3 mM).
Contractile responses to tachykinins and related com-
pounds were expressed as percentage of that induced
by ACh. The pD2 (defined as the negative log of the
molar drug concentration that caused 50% of maximal
effect) were calculated from the log concentration-
effect curves. When the pD2 value was not assessable
(maximal effect (Emax) not reached), it was replaced by
the -log EC20 (defined as the negative log of the drug
concentration that caused 20% of maximal contraction
with ACh). All values in the text and in the figures
are expressed as arithmetic mean ± standard error of
the mean (s.e.m) of duplicate experiments on tissues
from the given (n) number of individuals or animals.

Short-term culture of human bronchi and lung
parenchyma explants and of lung macrophages
Explants of lung parenchyma and bronchi were pre-
pared according to Mitsuta et al. [45]. Briefly, small
bronchi (1 mm ID) removed from 4 patients and lung
parenchyma from 6 patients were cut under sterile
conditions into small fragments and rinsed once in
RPMI 1640 supplemented with antibiotics (100 μg/mL
streptomycin and 100 U/mL penicillin) and 2 mM
L-glutamine. Explants were then conserved overnight
at +4°C in RPMI supplemented medium. Fragments
(≈ 50 mg) were pre-incubated in 12-well (bronchi) or
6-well (parenchyma) culture plates for 1 hour (37°C,
5% CO2) in the presence of phosphoramidon (10-6 M)
in 2.5 mL (bronchi) or 5 mL (parenchyma) of RPMI
supplemented medium, before hHK-1 or SP (both 10-9

to 10-5 M) was applied.
Lung macrophages from 6 patients were isolated and

cultured as previously described [46] and exposed to

Grassin-Delyle et al. Respiratory Research 2010, 11:139
http://respiratory-research.com/content/11/1/139

Page 3 of 12



either hHK-1 or SP (both 10-9 to 10-5 M) after a 1-hour
pre-incubation with phosphoramidon (10-6 M). After a
24 hour incubation of bronchi and parenchyma explants
or lung macrophages, supernatants were collected,
centrifuged and frozen at -80°C until subsequent cyto-
kine quantification.

Cytokines and hHK-1 assays
Cytokines production (TNF-a, IL-6, IL-8, MIP-1a,
MCP-1, ENA-78, GRO-a, MIG, and MIF) was assessed
by measuring their concentrations in the culture super-
natants with enzyme-linked immunosorbent assays
(ELISA, Duoset Development System), according to the
manufacturer’s instructions (R&D Systems Europe, Lille,
France). hHK-1 concentrations were determined with
enzyme immunoassay (EIA) according to the manufac-
turer’s instructions (Bachem, Weil am Rhein, Germany).
Specifications of this EIA indicate absence of cross-
reactivity with SP, NKA or NKB, and appropriate negative
(RPMI alone) and positive (RPMI spiked with hHK-1)
controls were included in the assay. Supernatants were
diluted as appropriate and the optical density was deter-
mined at 450 nm with an MRX II microplate reader from
Dynex Technologies (Saint-Cloud, France). Concentra-
tions were expressed as pg per 100 mg tissue (bronchi and
parenchyma explants) or pg per million cells (lung macro-
phages). The detection limits of these assays were 8 pg/ml
for MIP-1a, 9 pg/ml for IL-6, 16 pg/ml for TNF-a,
MCP-1 and ENA-78, 32 pg/ml for IL-8, GRO-a and MIF,
and 62 pg/ml for MIG.

Sources of chemicals and reagents
Substance P (RPKPQQFFGLM-NH2), [Sar

9,Met(O2)
11]

substance P (selective for NK1 receptors), neurokinin A
(HKTDSFVGLM-NH2), [b-Ala

8]-NKA (4-10) (selective
for NK2 receptors), neurokinin B (DMHDFFVGLM-
NH2) were provided from Bachem and human hemoki-
nin-1 (TGKASQFFGLM-NH2) from NeoMPS (Stras-
bourg, France). Custom synthesized endokinin A/B,
endokinin C and endokinin D were supplied from Phoe-
nix Pharma (Belmont, California, USA), SR 140333 ((S)
1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylace-
tyl)piperidin-3-yl] ethyl)-4-phenyl-1-azoniabicyclo
[2.2.2]octane chloride), SR 48968 ((S)-N-methyl-N-
[4-acetylamino-4-phenylpiperidino-2-(3,4-dichlorophenyl)
butyl]benzamide) and SR 142801 ((S)-(N)-(1-(3-(1-ben-
zoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)propyl)-4-
phenylpiperidin-4-yl)-N-methylacetamide) were kindly
provided by Dr Emonds-Alt (Sanofi Research Center,
Montpellier, France) and dissolved in ethanol. Phosphora-
midon (N-(a-L-rhamnopyranosyloxyhydroxyphosphinyl)-
L-leucyl-L-tryptophan), penicillin/streptomycin stabilized
solution, L-glutamine and acetylcholine hydrochloride

were obtained from Sigma (Saint Louis, MO, United
States); RPMI 1640 medium from Eurobio Biotechnology
(Les Ulis, France). All tachykinins except NKB were dis-
solved in sterile distilled water and kept in aliquots at -20°
C until used. Solutions of NKB were prepared in 20%
dimethylsulfoxide and then diluted in distilled water. Max-
imal final concentrations of dimethylsulfoxide achieved in
organ baths were found to have no effect on resting bron-
chial tone and on acetylcholine-induced responses.

Statistical analysis of results
GraphPad Prism software (version 5.01 for Windows,
GraphPad Software®, San Diego California, United
States) was used to determine pD2 and Emax and to per-
form a statistical analysis of the results, using ANOVA
followed with Bonferroni post-tests. A p value lower
than 0.05 (p < 0.05) was considered to be significant.

Results
Tachykinins, tachykinin receptors and neutral
endopeptidase expression
In human bronchi, TAC4, TACR1 and TACR2 mRNAs
were found in all samples whereas TAC1 and TACR3
mRNAs were not detected (fig. 1). A low TAC3 mRNA
expression was found for one patient only, and NEP
mRNA was expressed in high amounts in three of
the four samples. All of these mRNAs were highly
expressed in fetal brain positive control samples,
except TACR2 mRNA which was not found in this
tissue.
In addition to TAC4 mRNA expression, hHK-1 pro-

tein was found in the supernatants of bronchial explants
(1.40 ± 0.31 pg/100 mg (n = 11)), parenchyma explants
(1.15 ± 0.29 pg/100 mg (n = 11)) and lung macrophages
(1.85 ± 0.89 pg/106 cells (n = 6)) cultured for 24 hours
in the presence of phosphoramidon.

Characterization of hHK-1- and endokinins-induced
responses in human airways
Contractile effects of hHK-1 and endokinins in isolated
human bronchi
On human isolated bronchi and in the presence of
phosphoramidon, hHK-1 produced concentration-
dependent contractions reaching 80 ± 2% of the con-
traction induced by acetylcholine with a pD2 of 5.6 ±
0.2 (n = 12) (fig. 2A). In comparison, Emax and pD2

values for the contractions induced by the NK2 receptor
agonist NKA were 87 ± 1% and 8.5 ± 0.1 (curves not
shown). EKA/B caused concentration-dependent con-
traction on human isolated bronchi and was equipotent
to hHK-1 (respective -log EC20 of 7.2 ± 0.3 (n = 3) and
7.0 ± 0.5 (n = 3)), whereas EKC and EKD were devoid
of any contractile activity (fig. 2B).
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Effects of tachykinin receptor antagonists on cumulative
additions of hHK-1 to human bronchi
The NK2 receptor antagonist SR 48968 (10-7 M), com-
pletely abolished the contractile effects of cumulative
additions of hHK-1 on human isolated bronchi, whereas
the NK1 receptor antagonist SR 140333 (10-7 M) only
exerted a small but not statistically significant reduction
of hHK-1-induced contraction at the lowest concentra-
tions (10-8 M-10-7 M) (fig. 2A). Finally, the NK3 recep-
tor antagonist SR 142801 (10-7 M) did not alter the
concentration-response curve to hHK-1.
Desensitization of the human tachykinin NK1 receptor
Since a rapid NK1 receptor desensitization has been
reported in human isolated bronchi [22], and in order
to clarify the role of the NK1 receptor in the responses
to hHK-1, we compared the effects of single or cumula-
tive additions of hHK-1 and of the specific NK1 receptor
agonist [Sar9,Met(O2)

11] SP. Experiments were per-
formed in the presence of the NK2 receptor antagonist
SR 48968 (10-7 M) to block the NK2 receptor-mediated
component. Cumulative additions of both peptides
induced small contractions of human isolated bronchi

(Emax = 9 ± 3% and 13 ± 3%, respectively), characterized
by inverted U-shaped concentration-response curves
(fig. 3A and 3B). On the other hand, single additions of
hHK-1 or [Sar9,Met(O2)

11] SP did not lead to an
inverted U-shaped curve but to a sigmoid response
curve, and maximal contractions reached 43 ± 5% and
26 ± 7% respectively, with pD2 values of 6.6 ± 0.3 (n =
5-7) and 8.0 ± 0.4 (n = 10). In contrast, concentration-
response curves for NKA and hHK-1 in the presence of
the NK1 receptor antagonist SR 140333 (10-7 M) were
similar whatever the protocol used (fig. 3C and 3D).
Effects of tachykinin receptor antagonists on single addition
of hHK-1 to human bronchi
SR 140333 and SR 48968 reduced weakly but not signifi-
cantly the response of human bronchi to a single addition
of 10-6 M hHK-1 (31 ± 5% and 31 ± 4% respectively, ver-
sus control 42 ± 4% (n = 6-12)) (fig. 4A). However, the
association of both SR 140333 and SR 48968 was synergic
and abolished the smooth muscle contraction. In con-
trast, the response to [Sar9,Met(O2)

11] SP (10-6 M), was
specifically abolished by SR 140333 but unmodified by
SR 48968 (fig. 4B).

TAC4 TACR1 TACR2TAC1 TAC3 TACR3 MME HPRT

Human bronchi

Positive control

Figure 1 Expression of tachykinin, tachykinin receptor and NEP mRNAs in human bronchi. RT-PCR product of the housekeeping gene
HPRT used as normalization standard is also represented. Equal aliquots of each cDNA sample (human bronchi or human fetal brain positive
control) were amplified for 40 PCR cycles with their respective specific primer pairs. Since TACR2 was not expressed in human fetal brain, another
bronchi sample was used as positive control for this gene.
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Cross-desensitization of tachykinin NK1 receptor between
hHK-1 and [Sar9,Met(O2)

11] SP
Since [Sar9,Met(O2)

11] SP and hHK-1 are both able to
induce a desensitization of NK1 receptors, we performed
cross-desensitization experiments with the two com-
pounds in order to assess if tissues desensitized with
one peptide were still responsive to a subsequent addi-
tion of the other peptide. Fig. 5 shows that after an
initial contraction induced by a single addition of [Sar9,
Met(O2)

11] SP (10-7 M), the response to a second addi-
tion of this peptide was abolished (33 ± 7% for the first
addition, 4 ± 1% for the second, n = 5, p < 0.01),
whereas under similar conditions, after an initial addi-
tion of [Sar9,Met(O2)

11] SP, the response to hHK-1
(3.10-7 M) was maintained (32 ± 7% and 34 ± 5%

respectively, n = 5). When hHK-1 was added in a first
step to the bath, the response to [Sar9,Met(O2)

11] SP
was abolished, whereas the response to a second addi-
tion of hHK-1 itself was partially reduced (48 ± 8% and
30 ± 2% respectively, n = 5), suggesting a cross-desensi-
tization between hHK-1 and [Sar9,Met(O2)

11] SP for the
NK1 receptor.

Characterization of hHK-1- and endokinins-induced
responses in guinea pig airways
Contractile effects of hHK-1 and endokinins in isolated
guinea pig airways
Human hemokinin-1 induced concentration-dependent
contractions of the guinea-pig trachea (fig. 6A). This
effect was reproducible and independent of the protocol
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maximal contraction obtained with ACh 3 mM.
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used for the addition of hHK-1 (cumulative or noncu-
mulative). Table 1 shows that hHK-1 potency was simi-
lar to that of SP, but was 11-fold lower than that of
[Sar9,Met(O2)

11] SP and 49- and 72-fold lower than that
of the NK2-receptor agonists, NKA and [b-Ala8]-NKA
(4-10), respectively. EKA/B (10-8 M-10-6 M) exerted
similar effects to hHK-1, whereas EKC and EKD were
without effect (fig. 6A). In guinea-pig isolated bronchi
(fig. 6B), hHK-1 and EKA/B exerted similar effects but
were less potent than SP and [Sar9,Met(O2)

11] SP.
Effects of tachykinin receptor antagonists on cumulative
additions of hHK-1 to guinea pig airways
Contractions induced by hHK-1 on the isolated guinea-
pig trachea (fig. 7A and 7B) and main bronchi (fig. 7C)
were abolished by the NK1 receptor antagonist SR

140333 (10-7 M), and were altered to a lesser extent by
the NK2 receptor antagonist SR 48968 (10-7 M). In addi-
tion, fig. 7A shows that SR 140333 reduced maximal
contractions induced by hHK-1 in the guinea-pig tra-
chea, suggesting a non competitive antagonism in line
with previous data on the rabbit pulmonary artery and
on the guinea pig ileum [42].

Effects of hHK-1 and SP on cytokine production by
human bronchi or lung parenchyma explants and by lung
macrophages
hHK-1 and SP up to 10-5 M had no impact on TNF-a, IL-
8 and MIP-1a production by bronchial explants (n = 4).
Similarly, both peptides did not alter TNF-a, IL-6, MIP-
1a, MCP-1, ENA-78, GRO-a, MIG, and MIF production
by lung parenchyma (n = 6 different preparations) and
TNF-a, IL-6, MIF, MIG and MIP-1a production by lung
macrophages (n = 3 to 6 different preparations) (data not
shown). LPS caused a clear-cut increase of these cytokines
in all preparations.

Discussion
In the present study we have demonstrated the expres-
sion of TAC4 transcript and protein in human bronchi
and shown that hHK-1 and EKA/B exert a contractile
effect in human and guinea pig airways. In human iso-
lated bronchi, the response is mediated mainly through
NK2 receptor stimulation, the NK1 receptor-mediated
effect being unmasked in the presence of SR 48968 and
subject to rapid desensitization. In guinea pig trachea
and main bronchi, the response is mediated mainly
through NK1 receptor stimulation and to a minor extent
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expressed in percentage (mean ± s.e.m.) of maximal contraction obtained with ACh 3 mM.

Table 1 Functional potencies and maximal effects of
human hemokinin-1 and various tachykinin peptides on
guinea-pig trachea

Agonist N pD2 Emax (% of Ach 3 mM)

hHK-1 12 6.4 ± 0.03 73 ± 5

EKA/B 6 ND ND

SP 12 6.7 ± 0.1 84 ± 2

[Sar9,Met(O2)
11] SP 12 7.5 ± 0.1 76 ± 2

NKA 6 8.1 ± 0.1 95 ± 2

[b-Ala8]-NKA (4-10) 6 8.3 ± 0.6 80 ± 5

hHK-1: human hemokinin-1, EKA/B: endokinin A/B, SP: substance P, NKA:
neurokinin A.

ND: not determined because an asymptote was not reached with the highest
concentration (1 μM) applied.

Values are presented as pD2 and percentage of maximal contraction obtained
with Ach 3 mM (mean ± s.e.m.) for n determinations.
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through NK2 receptors. The N-terminally extended form
of human hHK-1, EKA/B, exerts similar effects to hHK-
1 on both human bronchi and guinea pig airways,
whereas EKC and EKD, peptides also derived from
TAC4, did not induce functional responses. Finally, we
have shown that hHK-1 did not alter cytokine produc-
tion by human bronchi or parenchyma explants, or by
human lung macrophages.
Our study shows that the TAC4 gene encoding for

hHK-1 is constitutively present and expressed in human
airways. Only a few numbers of studies have been
devoted to the presence of TAC4 in human tissues, parti-
cularly in lung, and none of them has previously reported
expression of hHK-1 protein. Indeed, TAC4 expression
was not found in the mouse lung by northern blot analy-
sis [3], but was demonstrated by semi-quantitative PCR
in murine lung (mouse, gerbil) [4,5]. In human, a wide
expression of TAC4 has been reported with a strong
expression in tissues such as heart, skeletal muscle, skin,
thyroid, spinal cord, placenta, adrenal gland, spermatozoa
and blood circulating cells and a weaker expression in
whole lung, kidney, testis and liver [4,6,39,47]. In contrast
to TAC4, we have shown that TAC1, which encodes for
SP and NKA, was not detected under our experimental
conditions and that TAC3 was observed in only one of
four samples. In a previous study, Pinto et al. showed in
a human total mRNA master panel (BD Biosciences
Clontech) that TAC1 and TAC3 mRNAs were undetect-
able in the lung, but they observed a low expression of
these transcripts in samples of human bronchi obtained
from patients who had undergone lobectomy or pneu-
mectomy for lung carcinoma, a high expression being
observed in pulmonary arteries [48]. Concerning the
genes that encode for tachykinin receptors, we have iden-
tified the mRNA expression of TACR1 (NK1 receptor)

and TACR2 (NK2 receptor), in agreement with Pinto et al.
and in agreement with previous immunohistochemical
evidences of NK1 and NK2 receptor expressions in human
bronchial smooth muscle, bronchial glands and bronchial
vessels [48,49]. We did not find TACR3 (NK3 receptor)
expression whereas Pinto et al. identified this transcript in
all assayed tissues [48]. These discrepancies in the results
of tachykinin transcript expression could be related to dif-
ferences either within human samples or to differences in
expression patterns of tachykinin genes along the respira-
tory tract since we used smaller bronchi than in the work
of Pinto et al. and since differences in the response to
tachykinins have been reported according to the size of
human bronchi [22]. It should be noted that we found
TAC4 transcript and hHK-1 protein expressions in human
bronchi similar in size (1 to 3 mm) to the bronchi used for
the functional studies, substantiating a role for hHK-1 in
the regulation of airway tone. Finally, our results showing
NEP mRNA expression are also consistent with previous
studies reporting a strong expression of NEP in human
bronchi [50].
In human isolated bronchi pre-treated with phosphor-

amidon, hHK-1 exerts a contractile effect which was
abolished by the NK2 receptor antagonist SR 48968,
while the NK1 receptor antagonist SR 140333 only
weakly reduced the effects of hHK-1 at low concentra-
tions. In human bronchi, hHK-1 appears 800-fold less
potent than NKA. This result is in agreement with pre-
vious data obtained on NK2 receptors either with CHO
cells [4] or rabbit pulmonary artery [13].
A rapid functional desensitization of NK1 receptors

has been reported with SP and specific NK1 receptor
agonists in different tissues [51,52] including airways
[22]. In addition, HK-1 has been reported to induce a
desensitization of NK1 receptors in human embryonic
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kidney cells [11], rabbit jugular veins [13], U251 MG
astrocytoma cells [53] and scratching behavior in rats
[54]. We also observed desensitization of NK1 receptors
in human bronchi, since the magnitude of the contrac-
tile response caused by the second application of the
NK1-receptor specific agonist was lower than after the
first addition, even with a 10-fold higher concentration.
Such a desensitization can be due to receptor internali-
zation, which is a common phenomenon for NK1 recep-
tor signaling [55] and has already been described with
hHK-1 on astrocytoma cells [53]. We have demon-
strated a cross-desensitization between hHK-1 and
[Sar9, Met (O2)

11] SP substantiating NK1-receptor acti-
vation and desensitization by hHK-1. In addition, since
a first exposure to [Sar9, Met (O2)

11] SP was able to
desensitize the NK1 receptor, preventing a second
response to this specific NK1-receptor agonist, but was
unable to prevent the response to hHK-1, these cross-
desensitization experiments further substantiate the
NK2-receptor mediated component of the contractile
response to hHK-1. As expected in the single addition
protocol, the contractile effect of [Sar9,Met(O2)

11] SP
was abolished by the NK1 receptor antagonist SR
140333 and unmodified by the NK2 receptor antagonist
SR 48968. In contrast, the effect of hHK-1 was not
inhibited by SR 140333 or SR 48968 when used alone,
but was abolished by concomitant addition of the two
antagonists, demonstrating that hHK-1 contracts
bronchi through NK1- and NK2 receptors. However, it
can also be suggested that [Sar9,Met(O2)

11] SP and SP
on the one hand, and hHK-1 on the other hand, may
bind to different sites of the NK1 receptor and interact
in a different manner with receptor antagonists [5,56].
In contrast with the results in human bronchi, SP and

the specific NK1-receptor agonist produced maximal
responses similar to those of NKA and hHK-1 in guinea
pig airways providing evidence of the higher involve-
ment of NK1 receptors in this animal species than in
humans as already reported [23,40]. In support of this
notion, hHK-1 exerted a contractile effect mainly
through NK1 receptor stimulation since this effect was
abolished by the NK1 receptor antagonist SR 140333,
but was only weakly reduced in the presence of the NK2

receptor antagonist SR 48968. However, the NK2 recep-
tors play a predominant role in guinea pig airways con-
traction since NKA is approximately 10-fold more
potent than SP [23,40]. The weak effect of SR 48968
against hHK-1 induced bronchoconstriction in the gui-
nea pig airways is likely explained by the higher affinity
of hHK-1 for NK1- than for NK2 receptors in a prepara-
tion fully responsive to NK1-mediated response
[4,10,13]. It is noteworthy that the potency of hHK-1 in
the guinea pig airways was lower than that reported for
r/mHK-1 in specific NK1-receptor animal tissues such

as rabbit jugular vein [13], rat urinary bladder [10] and
pig coronary artery [17].
In our study of cytokines production, we were not

able to reproduce the weak TNF-a production that was
observed in SP-stimulated human alveolar macrophages
from healthy subjects [57]. This result may be related to
the underlying disease or the smoking status of the
patients that were all ex-smokers in our study since SP-
induced TNF-a release is more pronounced in smokers
[57]. SP-induced release of inflammatory mediators by
human monocytes/macrophages still remains controver-
sial and may have been related to the presence of endo-
toxin at low levels [58-61]. In addition to the lung
macrophages, explants of lung parenchyma and bronchi
did not produce pro-inflammatory cytokines in response
to hHK-1 or SP, suggesting that hHK-1 may not be
involved in lung inflammatory pathways through the
release of these cytokines. However, hHK-1 may exert
other inflammatory effects as already described for SP
or NKA (reviewed in [36]).
SP expression has been reported in the human

respiratory tract [62] and is increased in airways [63],
bronchoalveolar or nasal lavages [64], sputum [65] or
plasma [66] from asthmatics. It has been demonstrated
that the antibodies used in such studies were directed
against the C-terminal portion of SP, which is shared by
hHK-1, leading to cross-reactivity with hHK-1 [5].
Immunoreactivity attributed to SP expression in human
lungs may therefore be also related to hHK-1 expres-
sion. The use of specific assays for hHK-1 is required to
evaluate the respective expression of SP and hHK-1 in
the respiratory tracts of healthy subjects and in patients
with asthma.

Conclusion
In conclusion, our results provide evidence for a consti-
tutive expression of TAC4 and hHK-1 in human
bronchi. Our findings indicate that hHK-1 could induce
contraction of human bronchi and guinea pig airways.
This hHK-1-induced contraction could be mainly attrib-
uted to NK2 receptors in humans and to NK1 receptors
in guinea pig. The absence cytokine release from lung
explants and macrophages suggests that hHK-1 does not
participate in airways inflammation by inducing the
release of the pattern of cytokines measured in the pre-
sent study. hHK-1 is therefore involved in the tachyki-
nin-driven contractile response of human airways, but
further studies are needed for a better understanding of
hHK-1 involvement in airway diseases such as asthma.
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